图的Ramsey理论研究中的构造性方法

基本信息
批准号:11361008
项目类别:地区科学基金项目
资助金额:40.00
负责人:许晓东
学科分类:
依托单位:广西科学院
批准年份:2013
结题年份:2017
起止时间:2014-01-01 - 2017-12-31
项目状态: 已结题
项目参与者:邵泽辉,梁美莲,罗海鹏,尹闯,翟聪,韦海丽
关键词:
构造性方法localRamsey数Shannon容量Folkman数
结项摘要

Ramsey theory is an important area of combinatorics that is well known for its difficulty. It has numerous important applications in mathematics, and in communication theory, information theory and computer science. Constructive methods in Ramsey theory and its applications aim mainly at designing extremal structures with a delicate trade-offs between competing properties. The research in this project will focus on the constructive methods, together with tools in algebra, number theory, probability theory and analysis, to study in depth the lower bounds for classical Ramsey numbers by studying the relation between different classical Ramsey numbers, study Folkman numbers by studying a Folkman type problem with bounded chromatic numbers,and use these methods to study multigraph Ramsey numbers and local Ramsey numbers. This will very likely lead to new insights and results on Ramsey and Folkman structures and numbers. We anticipate that progress on this project will not only contribute to the knowledge of the constructive Ramsey theory, but also lead to new estimates of the Shannon capacity of noisy channels modeled by graphs, and new knowledge on other related problems in information theory and computer science.

Ramsey理论是组合数学的重要分支,以难度大著称,在许多数学分支及通信理论、信息论和计算机科学中有许多重要应用。Ramsey理论及应用中的构造性方法,主要是为了设计一些兼顾若干矛盾着的性质的极值结构。本项目将主要利用构造性方法,结合代数、数论、概率和分析中的工具,通过深入研究各种经典Ramsey数之间的关系来研究经典Ramsey数的下界,通过研究一个有色数限制的Folkman型问题来研究Folkman数的上界,并将这些方法用于研究多图Ramsey数和local Ramsey数。这将很有希望给出关于Ramsey数和Folkman数及相应结构的更多深刻的认识和结果。我们希望本项目中的进展不仅能为Ramsey理论中构造性方法的发展做出贡献,还能给出图的Shannon容量的新结果,加深我们对信息论和计算机科学中其他问题的认识。

项目摘要

本项目用构造性方法研究图的Ramsey理论中的一些问题,主要研究经典Ramsey数的下界,顶点和边Folkman数的上界等。对于Ramsey数,证明了一些与R(3,s)和R(K_3, K_s-e)有关的结果,利用合成图研究了local Ramsey数,给出了基于twin Ramsey数及其推广的多色经典Ramsey数的下界。我们还研究了Paley图的团数。关于多色对角经典Ramsey数下界的研究,加深了对有独立数限制的图的Shannnon容量的理解。对于Folkman数,证明了顶点色Folkman数的存在性,将一些关于顶点Folkman数的结果推广到广义顶点Folkman数,并给出了一些边Folkman数的新上界。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

DOI:10.3969/j.issn.1002-0268.2020.03.007
发表时间:2020
2

气载放射性碘采样测量方法研究进展

气载放射性碘采样测量方法研究进展

DOI:
发表时间:2020
3

基于分形维数和支持向量机的串联电弧故障诊断方法

基于分形维数和支持向量机的串联电弧故障诊断方法

DOI:
发表时间:2016
4

基于全模式全聚焦方法的裂纹超声成像定量检测

基于全模式全聚焦方法的裂纹超声成像定量检测

DOI:10.19650/j.cnki.cjsi.J2007019
发表时间:2021
5

Image interpolation via collaging its non-local patches

Image interpolation via collaging its non-local patches

DOI:
发表时间:2016

许晓东的其他基金

批准号:61871045
批准年份:2018
资助金额:60.00
项目类别:面上项目
批准号:71573096
批准年份:2015
资助金额:49.00
项目类别:面上项目
批准号:61471068
批准年份:2014
资助金额:80.00
项目类别:面上项目
批准号:61001116
批准年份:2010
资助金额:20.00
项目类别:青年科学基金项目

相似国自然基金

1

图的Ramsey理论中的随机方法

批准号:11101086
批准年份:2011
负责人:林启忠
学科分类:A0409
资助金额:16.00
项目类别:青年科学基金项目
2

Ramsey边线性图的结构特征

批准号:11101207
批准年份:2011
负责人:张运清
学科分类:A0409
资助金额:22.00
项目类别:青年科学基金项目
3

图Ramsey数及编码理论中相关的极值问题

批准号:11071115
批准年份:2010
负责人:陈耀俊
学科分类:A0409
资助金额:32.00
项目类别:面上项目
4

Ramsey图的代数结构和随机性

批准号:10871147
批准年份:2008
负责人:李雨生
学科分类:A0409
资助金额:24.00
项目类别:面上项目