The pathological changes of osteoarthritis eventually involve both the cartilage and subchondral bone. Traditional scaffolds can not integrate the cartilage layer and bone layer. Biphasic scaffolds integrated the regeneration of bone-cartilage tissue may be a potential therapeutic option. The applicant exploited a biomimetic bone-cartilage biphasic nanographene with stem cell scaffold. Growth factor concentrated on the surface of nanographene with stem cells, bone-cartilage repaired synchronously with in vivo. The hypothesis is that nanographene forms a biphasic "germinal center" inside the biphasic of scaffold. Stem cell in scaffold gather and activate the signal of RANKL-CXCR4, bone/cartilage repaired simultaneously. However, it is necessary to further clarify the mechanism by which the scaffold forms the germinal center, elucidating the molecular process of osteochondral integration by activating RANKL-CXCR4. In this project, we plan to 3D print biphasic nanographene scaffolds exploring the three-dimensional spatial structure and biological characteristics of "germinal center". To research the changes of cytoskeleton tensin and mechanical bioreceptors on the surface of scaffolds with different morphologies. CXCR4 promotes stem cell migration and ultimately RANKL activated osteochondral integrated repair. The development of this project will help to open up a new theoretical basis and treatment strategy for the prevention and treatment of osteoarthritis.
骨性关节炎已经成为老龄化社会亟待解决的公共健康问题,但远期有效的修复方案和详细分子机制仍未阐明。申请人前期3D打印了一种含仿胶原纤维排列及仿骨小梁结构的双向纳米石墨烯支架,使软骨层及骨层得到了有效整合。预实验结果表明该支架关节内移植可一体化再生骨-软骨单元,支架内形成双向生发中心,中心内RANKL-CXCR4表达激活。据此提出科学假说:双向纳米石墨烯仿生支架可构建生发中心实现骨-软骨单元一体化修复。然而需进一步阐明生发中心的结构特征及形成机制,生发中心内RANKL-CXCR4激活诱导骨-软骨单元修复的机制。本项目拟进一步在材料学,细胞学及动物模型中研究纳米石墨烯作为生发中心在骨-软骨一体化修复中诱导干细胞迁移分化的能力,并阐明支架对干细胞的细胞骨架、生物力学感受器及下游RANKL-CXCR4信号调控机制,揭示材料、细胞和分子变化规律及生命本质,可望最终为骨性关节炎新的治疗方案提供学术依据。
三维打印技术是骨性关节炎治疗中非常有前景的方案之一,特别是运用各种打印手段制备多种功能的复合支架满足关节各组分需要将有望远期有效的骨软骨修复。本项目首先通过生物打印技术构建了负载软骨细胞和BMP-2 的双向纳米石墨烯水凝胶仿生支架,证实支架为软骨细胞提供了理想微环境且促进软骨细胞的增殖、黏附,并阐明了支架降解与软骨衍伸的潜在关系。其次,本项目根据膝关节的解剖特点、通过静电纺丝技术构建了负载生物活性玻璃和硫酸软骨素的PLCL三层复合纤维膜,首次发现聚合物中的生物活性离子在软骨修复早期表现出极其有趣的软骨钙化层修复反应,证实了精确调控多层复合纤维膜化学组成和梯度功能设计可以改善骨软骨界面重建。最后,本项目通过多种三维打印技术构建了诱导骨-软骨一体化修复的仿生三相复合支架,充分研究了材料作为骨-软骨修复一体化平台在兔、猪等动物体内的可行性以及骨-软骨再生修复的潜在机制,结果证明具有为骨软骨组织的不同组分提供了不同的结构、机械支撑以及为软骨和骨再生提供了各自相对独立的微环境和细胞、营养物质流动空间的仿生三相复合支架,具有良好的骨-软骨一体化修复效果。本项目的研究成果为构建具有远期有效的骨-软骨一体化修复效果的组织工程支架提供了一种可靠的设计和优化方案,为骨软骨修复医用支架的临床转化提供了一定的理论和技术支持。本项目研究期间在Journal of Nanobiotechnology、Journal of Materials Chemistry B、Regenerative Biomaterials、Biomaterials Advances、Materials & Design等发表SCI收录学术论文6篇,待发表论文1篇,公开授权专利1项,培养硕士研究生3人。
{{i.achievement_title}}
数据更新时间:2023-05-31
Combining Spectral Unmixing and 3D/2D Dense Networks with Early-Exiting Strategy for Hyperspectral Image Classification
Facile Fabrication of Hollow Hydrogel Microfiber via 3D Printing-Assisted Microfluidics and Its Application as a Biomimetic Blood Capillary
污染土壤高压旋喷修复药剂迁移透明土试验及数值模拟
自组装短肽SciobioⅡ对关节软骨损伤修复过程的探究
长链烯酮的组合特征及其对盐度和母源种属指示意义的研究进展
石墨烯水凝胶多孔支架修复颅面骨缺损的作用及机制研究
仿生设计的高强度双层生长因子缓释水凝胶支架修复关节骨软骨缺损
带界面结构的一体化仿生骨软骨支架的研制及修复骨软骨缺损的实验研究
紫外聚合缓释Kartogenin PLGA纳米颗粒/水凝胶复合支架修复软骨缺损