In semiconductor spintronics, a highly appealing area is to search for high Curie temperature (Tc) magnetic semiconductors (DMO) in which the host ions can be substitutionally doped, the spins and carriers can be independently tuned, and various thin-film heterostructures can be epitaxially grown at low cost. This project is centered around the central concept of non-compensated p-n codoping, invoking the choices of main group elements and transition metals to form p-n pairs and codope ZnO and TiO2. Within this approach, the main group elements provide charge carriers, the transition metals supply spins, thereby allowing us to separately tune the spin injection and carrier concentration in achieving high-Tc oxide diluted magnetic semiconductors. In order to increase the concentrations of the dopants in the host oxides, we will explore the thermaldynamic solubilities at different lattice sites and preferred kinetic pathways of different non-compensated p-n pairs. The carrier concentration and magnetization can be adjusted by varying the density of the p-n pairs and the rich choices of the main group elements. Such broad tunabilities will offer new opportunities to reveal the origin of ferromagnetism, and further make conceptual advances in the microscopic mechanism of ferromagnetism. We will also design and fabricate novel magnetic tunneling junctions by using the DMO as the electrode layer or barrier layer, and explore its potential for achieving linear response in a high external field. Our main findings will also have a significant impact in other material science areas where precise dopant control is essential, and will help to lay the theoretical and experimental foundations for applications of diluted magnetic oxides in spintronics devices.
探索一种居里温度(Tc)高于室温,具有原子尺度替代掺杂,自旋注入和载流子可分离调控,且薄膜外延生长成本低的稀磁半导体材料已成为目前半导体自旋电子学领域的一个热点。本项目围绕非补偿p-n共掺这一中心概念来选择主族元素和过渡金属共掺ZnO和TiO2,利用主族元素提供载流子,过渡金属提供自旋,从而实现自旋注入和载流子浓度的分离调控,以获得Tc高于室温的氧化物稀磁半导体。找出不同p-n 共掺组合在晶格中不同位置的热力学稳定性和最优替代位的动力学途径,使其溶解度有效增大,实现替代掺杂。通过调控p-n对掺杂浓度和富主族元素浓度来调控体系的磁性和载流子浓度。探明其磁性来源,在磁性产生机制上取得概念上的突破。设计并制备以稀磁半导体为基的新型隧道结,使其具有高的室温磁电阻率并能在高场下线性响应。本项目的研究成果将促进其它对掺杂有苛刻要求的材料领域发展,并会为推动稀磁半导体器件化提供重要的理论和实验依据。
自旋电子学作为下一代信息技术中最有前途的发展方向之一,多年来受到人们的高度重视,而稀磁半导体是目前半导体自旋电子学领域的一个研究热点。探索高居里温度的本征稀磁半导体材料是本领域的重要科学问题。本项目通过n-p共掺方法,制备了自旋与电荷分离调控的居里温度高于室温的TiO2、In2O3以及ZnO等氧化物稀磁半导体,研究了n-p共掺方法对半导体材料热力学稳定性和长程铁磁有序的作用;澄清了其铁磁性源于磁性金属离子与相邻氧空位形成的复合中心,并证明了磁性金属掺杂半导体可以有效调控半导体薄膜的带隙;研究了n-p共掺杂的拓扑绝缘体及基于二维铁磁绝缘体的高温量子反常霍尔效应,发现V/I共掺的Sb2Te3拓扑绝缘体中可实现超过50K的高温量子反常霍尔效应;发现不同的n-p共掺杂组合可以实现石墨烯的强长程铁磁性、量子反常霍尔效应及巨Rashba自旋劈裂效应,同时能最大程度保留石墨烯本身新奇物理特性;在此基础上研究氧化物基阻变器件中电场驱动氧离子局域迁移与氧化还原过程,可控构建了具有选通功能的VO2纳米通道和量子化电导特征的Hf原子点接触结构,实现了量子电导态的精准调控,并在氧化物磁性薄膜中通过电、磁共同调控实现多态存储;此外,项目组还探究了氧化物异质结的强交换偏置作用,在国际上首次实验观察到镍基超导现象,并预言了新型二维拓扑超导体系;还研究了石墨烯体系等离激元的量子调控和相干性以及强耦合体系等。本项目的研究成果将为稀磁半导体器件化提供重要的理论和实验依据进程,并为自旋电子学领域新奇物理现象的发现和探索提供条件。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
低轨卫星通信信道分配策略
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
钢筋混凝土带翼缘剪力墙破坏机理研究
Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction
自旋和电荷掺杂机制分离的新型稀磁半导体
高居里温度SiC稀磁半导体薄膜的制备、结构与磁性研究
稀磁半导体/半导体界面对载流子自旋注入和输运特性的影响
载流子掺杂改性ZnO基稀磁半导体纳米线阵列的研制