哈密顿偏微分方程中的小分母问题

基本信息
批准号:11301072
项目类别:青年科学基金项目
资助金额:22.00
负责人:徐新冬
学科分类:
依托单位:东南大学
批准年份:2013
结题年份:2016
起止时间:2014-01-01 - 2016-12-31
项目状态: 已结题
项目参与者:石艳玲,陆雪竹,孔跃东
关键词:
理论KAM哈密顿系统刘维尔索伯列夫范数
结项摘要

A large number of partial differential equations of Physics share the structure of infinite-dimensional Hamiltonian system. The Schr?dinger equation, the wave equation, the Euler equations of hydrodynamics are all among this class. The investigation of periodic, quasi-periodic and almost periodic solution, the growth of sobolev norm leads to the well known "small divisor problem". We aim to get quasi periodic orbits with any kind of frequency structure, and develop a frame adapt to nonlinear perturbation problem with Liouville frequency. To enrich the result on existence of quasi periodic solution,almost periodic solution and so on, more special structure of given equation are needed and also the hidden nondegenerate condition of frequency drift. We also interested on the growth of sobolev norm, which gives more information on difussion of energy. In all these field there are many problems need to solve, our group have many good ideas now. Our approach will combine Nash-Moser Iteration, KAM theorem, normal form technical and so on.

物理中如薛定谔方程,波动方程、流体动力学中的欧拉方程等大量的偏微分方程都具有无穷维哈密顿系统结构。对它们的拟周期解与概周期解的存在性、索伯列夫范数的增长性等问题的研究最终都需要解决著名的"小分母"问题。我们计划研究具有各种频率特征的拟周期解,发展适用于刘维尔频率下非线性问题的迭代框架,对概周期解现有的结果进一步完善,对解的索伯列夫范数进行更深入的研究。这些问题的解决依赖于对频率漂移更加深刻的认识,挖掘其中所隐含的关于参数的非退化性;对方程本身的特定结构分析等;在这些方面我们已有比较好的结论与想法。我们的研究将涉及Nash-Moser迭代、KAM理论、正规形方法等各个方面。

项目摘要

物理中如薛定谔方程,波动方程、流体动力学中的欧拉方程等大量的偏微分方程都具有无穷维哈密顿系统结构。对它们的拟周期解与概周期解的存在性、索伯列夫范数的增长性等问题的研究最终都需要解决著名的"小分母"问题。我们计划研究具有各种频率特征的拟周期解,发展适用于刘维尔频率下非线性问题的迭代框架,对概周期解现有的结果进一步完善。这些问题的解决依赖于对频率漂移更加深刻的认识,挖掘其中所隐含的关于参数的非退化性;对方程本身的特定结构分析等;在这些方面我们已有比较好的结论与想法。我们的研究将涉及Nash-Moser迭代、KAM理论、正规形方法等各个方面。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于分形L系统的水稻根系建模方法研究

基于分形L系统的水稻根系建模方法研究

DOI:10.13836/j.jjau.2020047
发表时间:2020
2

基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像

基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像

DOI:10.11999/JEIT150995
发表时间:2016
3

拥堵路网交通流均衡分配模型

拥堵路网交通流均衡分配模型

DOI:10.11918/j.issn.0367-6234.201804030
发表时间:2019
4

卫生系统韧性研究概况及其展望

卫生系统韧性研究概况及其展望

DOI:10.16506/j.1009-6639.2018.11.016
发表时间:2018
5

面向云工作流安全的任务调度方法

面向云工作流安全的任务调度方法

DOI:10.7544/issn1000-1239.2018.20170425
发表时间:2018

徐新冬的其他基金

批准号:11771077
批准年份:2017
资助金额:48.00
项目类别:面上项目

相似国自然基金

1

泛函微分方程中小分母问题的研究

批准号:11371132
批准年份:2013
负责人:李雪梅
学科分类:A0301
资助金额:56.00
项目类别:面上项目
2

两类哈密顿偏微分方程拟周期解问题的研究

批准号:11526178
批准年份:2015
负责人:石艳玲
学科分类:A0303
资助金额:3.00
项目类别:数学天元基金项目
3

哈密顿偏微分方程的不变环面

批准号:11271180
批准年份:2012
负责人:耿建生
学科分类:A0303
资助金额:50.00
项目类别:面上项目
4

哈密顿系统的扰动及其在偏微分方程中的应用

批准号:19701007
批准年份:1997
负责人:徐君祥
学科分类:A0303
资助金额:3.00
项目类别:青年科学基金项目