Inorganic porous materials have attracted enormous interest due to their wide applications in catalysis, separation etc. One of the difficulties which hint their even wider applications is that the synthesis strategies of inorganic porous materials are not well developed. In the traditional synthesis routes, new inorganic porous materials are normal synthesized after a large amount of trials and errors and the experience of the success in synthesizing one cannot be easily transferred to the synthesis of the others. Inspired by the synthesis of metal-organic frameworks, we will develop a new synthesis route for inorganic porous materials. Normally, this type of materials are synthesized by using single ion polyhedra as building units, and due to the flexibility of the ion polyhedra, it is very difficult to predict what will be obtained. Instead, we will use big clusters or layered precursors as building units in this project. According to the functional groups and their distribution in different clusters, we will choose the suitable metal polyhedral as linkers to assemble them into three-dimensional frameworks. Since the big clusters have fixed internal structure and functional groups, this synthesis route is more controllable than the traditional synthesis methods. In the project, we will also develop new structure determination methods to solve structures of the obtained porous materials which is normally in a powder form with huge unit cell dimensions. We will also use various techniques to study the crystal growth mechanism by tracking the formation/assembly of the cluster, growth/dissolving of the porous material crystal, which will provide important knowledge for the new designed synthesis. We will also study the application of our obtained porous materials, especially about the gas separation and catalysis.
无机晶态微孔材料由于其在催化、分离等方面广泛的工业应用,一直是各国科学家关注的热点。其应用的最大障碍之一是其合成方法的可设计性差,一个新材料的发现需要大量的尝试,而所得经验往往不能轻易移植到别的体系。由金属有机骨架材料的合成方法获得启发,本项目将集中发展新的无机孔材料的合成方法。传统的无机孔材料合成一般以单个的离子配位多面体为原料,由于其多变性,很难预测产物的结构,而本项目将使用大的离子簇或层状结构片段作为结构单元,通过选择合适的简单金属多面体或其他团簇将它们连接成三维骨架,由于离子簇结构的确定性,这样的合成思路更具有可控性,而且官能团所带属性也可直接转移到三维孔材料中。课题中将发展新的结构确定方法以解决粉末状态下具有超大单胞的孔材料结构,还将通过不同的技术追踪离子簇的形成和聚集等过程,从而为更理性的设计新的合成提供基础。后期我们也将研究所得材料在气体分离、催化等方面的应用。
整个项目执行正常,取得了一系列较为有影响的成果,在国际知名期刊发表论文30余篇。 这里挑选几个突出的成果进行简单介绍。.1..首次通过三维电子衍射确定了纳米晶COF的所有非氢原子位置。.2..通过三维电子衍射首次确定二维导电金属有机框架材料中所有非氢原子.3..发现了ECNU-21的“纯样”中包含新拓扑沸石ECNU-23.4..发展了多套数据解析柔性COF结构的方法.5..开发了cPEDT的新的三维电子衍射方法
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
硬件木马:关键问题研究进展及新动向
基于二维材料的自旋-轨道矩研究进展
滚动直线导轨副静刚度试验装置设计
有机-无机中孔材料的合成与应用研究
无机孔材料的可控合成与结构性质研究
有机-无机仿生杂化材料的设计合成与催化功能调控
新型无机/有机纳米复合磁功能材料的设计、合成与性能