O-GlcNAc glycosylation, one of the most important protein post-translational modifications (PTMs), exists in multicellular animals and plants of intracellular protein, which is involved in regulating various cell signaling pathways and related to neurodegenerative diseases, diabetes, cancer and other diseases. O-GlcNAc transferase (OGT) can transfer N-acetylglucosamine (GlcNAc) onto specific serine or threonine residues of proteins with O-glycosidic bond of β-configuration, which is crucial in O-GlcNAc glycosylation. The modification mainly focuses on catalytic mechanism and protein recognition. Experimentally, due to the instantaneously glycosylation modification, it is difficult to simulate the real situation accurately. Moreover, the corresponding theoretical calculations are few. Thus the specific mechanism is unclear. Herein the modification mechanism of protein O-GlcNAcylation by OGT will be calculated on basis of MM MD, QM/MM MD, RAMD and SMD methods, combined with various technologies such as umbrella sampling and homology modeling. The enzymatic catalytic mechanism, tunneling effect of proton transfer, transport pathways of substrate and product, recognition mechanism of protein, interaction mechanism of protein-protein, and the role of key residues in enzymatic process and protein recognition will be explored deliberately. The expected results will provide theoretical basis for understanding the mechanism of O-GlcNAc glycosylation, which will promote the discovery of new drug target and the development of OGT inhibitors.
O-GlcNAc糖基化是一种蛋白质翻译后修饰方式,参与调节多种细胞信号通路,并与神经退行性疾病和癌症等息息相关。O-GlcNAc转移酶(OGT)作为调控此修饰仅有的两种酶之一,能够将GlcNAc以O-糖苷键连接到蛋白质上。其修饰机制主要集中在催化机理和蛋白质识别两个方面。实验上,由于糖基化修饰的瞬时性,较难模拟真实情况;而且,相应理论计算较少,具体机制尚不明确。因此,我们拟采用MM MD和QM/MM MD等方法,结合伞形采样等技术,对OGT介导蛋白质O-GlcNAc糖基化修饰机制进行理论计算,预测酶催化反应微观机理,探明反应中质子转移隧穿效应,揭示反应物结合和产物释放通道及其热动力学性质,从原子尺度上探索OGT对蛋白质的识别机制及蛋白-蛋白相互作用模式,探讨关键残基在催化活性调控及蛋白质识别中的作用,为O-GlcNAc糖基化研究提供理论依据,促进全新药物靶蛋白寻找和OGT抑制剂设计。
本项目采用MM MD和QM/MM MD,结合伞形采样等多种技术,对OGT介导蛋白质O-GlcNAc糖基化修饰机制进行研究。(1)对产物UDP在OGT蛋白中的结合模式和释放过程进行探究,确定了Lys634等关键残基在结合和输运中的调控作用,发现16条可能的输送通道,获取了优势通道UDP输送机制和热动力学性质,发现氢键为UDP输送的关键,在不同阶段都具有驱动或限制作用。(2)对柔韧性较大的底物肽段在OGT中的结合及输运机制进行了研究,通过多构象统计分析,结合单点及多点连续定点突变,确定关键残基在UDP和肽段结合及肽段释放中的作用,发现结合自由能主要来自侧链范德华相互作用;通过多种方法及参数测试,发现端位优先输出为肽段输运的最优模式,获取其自由能曲线,并发现His496和Lys634起到关键调控作用。(3)对OGT催化蛋白O-GlcNAc糖基化化学反应机理进行研究,发现肽段丝氨酸羟基朝向UDP-GlcNAc磷酸根为优势构象,且UDP-GlcNAc自身提供碱基基团夺取丝氨酸质子、丝氨酸羟基氧进攻UDP-GlcNAc的GlcNAc端基碳原子、C-O键断裂形成产物糖基化肽段及UDP是同时发生的,遵循协同机制。(4)以OGT识别辅助蛋白GABAA为例,对OGT蛋白识别机制进行研究,获得10种优势结合构象及最优结合位点,探索二者作用网络及解离机制,并通过能量分解及定点突变,确定Tyr388等关键残基作用,发现静电相互作用为蛋白互作的关键。(5)对OGT底物UDP-GlcNAc前体GlcNAc-1-P生物逆合成机制进行计算,构建催化过程全景图,发现双镁离子在催化过程中极为关键,磷酸根及质子转移的发生为协同机制,水分子能够协助GlcNAc-1-P成为游离态;底物传递中,蛋白质lid motif区发生构象变化,且过程难易高度依赖配体周围氢键的数目及质量。(6)将总结出的蛋白-蛋白相互作用计算方案应用于JAK1-SOCS1体系,构建吸附位点及作用机理的Landscape,确定关键残基,从原子尺度上获取结合特点、类型及作用形式等信息。综上所述,该项目的研究为OGT介导蛋白质O-GlcNAc糖基化修饰提供一定的理论基础,促进全新药物靶蛋白的寻找和OGT抑制剂的研发,不断改进的蛋白互作计算方案也能为其他相关体系提供一定的帮助。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
气载放射性碘采样测量方法研究进展
Ogt介导的O-GlcNAc糖基化修饰对成年小鼠神经干细胞和学习记忆的调控作用与机制研究
蛋白质O-GlcNAc糖基化修饰对血管损伤的保护及其分子机制
A20的O-GlcNAc糖基化修饰介导的血管损伤后保护及分子机制
蛋白质O-GlcNAc糖基化修饰在胚胎干细胞中的功能研究