本项目的目的是利用调和分析及泛函分析的方法对偏微分算子的若干核心问题,特别是偏微分算子的半群与谱问题开展系统研究,包括各种广义Schr?dinger算子的半群性质,着重在其主算子具有某种退化性质的情形;Hp中一般偏微分算子的谱性质;hp中Schr?dinger算子的谱性质;Lp(p>2)中一般偏微分算子的特征值问题;对应于高阶椭圆偏微分算子的不适定Cauchy问题;正则余弦算子函数对Shilov的抛物系统及Petrovskij的恰当系统的应用;以及相应的振荡积分、奇异积分算子和低维流形上Fourier变换的问题。其意义在于进一步完善偏微分算子的理论,并充分阐明调和分析方法在偏微分算子的一些核心问题的研究中将大有作为,同时亦将对调和分析的相关论题的研究产生积极的影响。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于LS-SVM香梨可溶性糖的近红外光谱快速检测
基于文献计量学和社会网络分析的国内高血压病中医学术团队研究
高分五号卫星多角度偏振相机最优化估计反演:角度依赖与后验误差分析
铁路大跨度简支钢桁梁桥车-桥耦合振动研究
基于暂态波形相关性的配电网故障定位方法
高阶Schrodinger算子与调和分析
调和分析与偏微分方程
与薛定谔算子相关的调和分析问题
算子谱理论,算子半群理论及抽象与应用调和分析