Giving the underwater propulsion function to the variant wing of the aquatic unmanned aerial vehicle (Aqua-UAV) is the most ideal scheme for the design of propulsion system of its submerged movement mode. Focusing on the three key scientific problems of the design basis of the hydrodynamic shape, the configuration and structure of paddling components, the movement control strategy of the variant wing of Aqua-UAV, and the mechanism of the high efficiency paddle propulsion of predacious diving beetle swimming legs, the following research work will be carried out, which is fine 3D modeling of the body shape and internal structure of swimming legs of predacious diving beetle, swimming kinematics of the swimming foot at the different swimming posture, and the padding mechanisms of swimming hair with high thrust and low return resistance. Based on the above research work, we will break through the design and manufacturing technologies of the variant wing of Aqua-UAV with paddle propulsion function, manufacture prototype of Aqua-UAV, and verify the underwater propulsion function of the variant wing. This proposal presents an idea of multiple-biomimetic based on the bionic study on the predation behavior of kingfisher, which provides a new method for solving the problems of Aqua-UAV wing share at the dry flight mode and the submerged movement mode. The comprehensive research of the biological function mechanisms of biological function of diving beetle, not only focuses on the kinematics regularity and the macro-micro morphology of swimming legs, but also pay attention to the fluid-solid coupling mechanism of swimming hair and water during the swimming legs stroking. The practice of this proposal will establish a bionic theoretical and technical basis for the design of the paddle propulsion function of Aqua-UAV variant wings at the submerged movement mode.
跨介质航行器潜行推进系统设计最理想的方案是赋予其变体机翼划水推进功能。本项目围绕跨介质航行器流体动力外形以及划水推进部件构形与结构的设计依据、跨介质航行器变体机翼划水运动控制策略、龙虱游泳足高效划水推进机理三个关键科学问题,开展龙虱外形及游泳足内部结构三维建模、不同游泳姿态下活体龙虱游泳足运动学特性以及龙虱游泳足水动力学特性及推力产生机制的研究,在此基础上突破变体机翼仿生划水推进关键技术,制造具有水下潜行功能的跨介质航行器原理样机,并验证变体机翼划水推进性能。本项目结合前期翠鸟入水捕食行为仿生研究,提出了两种典型生物功能组合仿生的思想,为解决跨介质航行器干飞与潜行模式机翼共用问题提供了一种新方法。龙虱生物功能机理的研究,不仅关注游泳足的运动学规律及宏微观形貌,还从流体力学角度研究龙虱游泳毛与水的流固耦合作用关系,将为跨介质航行器变体机翼划水推进功能设计奠定仿生理论与技术基础。
跨介质航行器是一种可在空中与水中两栖巡航并能自由穿越水气界面的新概念海空两栖无人航行器。跨介质航行器的研制需解决干飞、入水、潜行、出水四个运行模式的关键技术,航行器需要具备良好的入水性能,同时水下具有较小的流体阻力。本项目选取龙虱生物作为仿生模本,结合项目组前期翠鸟仿生飞行器项目积累,运用组合仿生设计的思想,组合翠鸟和龙虱身体外形,兼顾空飞、水下潜行及入水多种运作模式,开展干飞与潜行模式动力系统工作部件共用的水下推进技术研究。.应用逆向工程技术获取龙虱外形的三维点云数据,建立龙虱物理模型和表征其几何外形的数学模型。龙虱精细外观建模为跨介质航行器机身与推进器外形、变体机翼结构设计提供了仿生基础。.搭建龙虱专用运动学信息采集平台,采用高速动态捕捉与分析技术获取龙虱各种运动姿态下游泳足监测点的运动学信息,建立表征不同划水姿态下游泳足划水过程中推进阶段与恢复阶段的运动学模型。确定了龙虱游泳足划水推进策略,建立了龙虱游泳足的动力学模型,为龙虱游泳足水动力特性及划水推进机制的研究提供了理论基础与数据支持。.搭建小型高精度试验台,研究游泳毛与流场的流固耦合作用机制,结合龙虱单支游泳毛表面微观形貌特征、游泳毛排布所形成表面润湿特性以及游泳毛化学成分测量与分析,阐明了龙虱游泳毛对龙虱运动能力的影响规律、游泳足的推力与回程阻力特性和游泳毛与流场的流固耦合作用机制,揭示了游泳足高效划水推进机理。.基于龙虱及课题组前期获取的翠鸟头部生物模本数据与数学模型,设计了跨介质航行器机身及分段变体机翼、翼尖部分的划水推进机构及驱动系统,建立了三维虚拟样机模型,采用计算机仿真方法分析其运动学及水动力学特性。突破了变体机翼仿生划水推进机构及驱动系统的设计技术,开展了水下推进功能完备的跨介质航行器原理样机的外形设计与气动特性模拟,完成了分段变体机翼设计与驱动方式分析以及变体划水推进机构设计与划水性能分析。.
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
跨社交网络用户对齐技术综述
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
感应不均匀介质的琼斯矩阵
基于小型水下航行器推进与操纵的柔性翼鳍流体动力机理研究
基于可控电磁支承的水下航行器推进轴系-壳体系统振动控制方法研究
水下航行器泵喷推进器间隙流动及其对噪声特性影响的研究
水下航行器推进用内外双转子异向旋转永磁同步电机研究