Multi-source knowledge fusion for decision knowledge integration and innovation is a new and practical research topic, which is proposed considering the research trends of theories and methodologies to resolve the complex decision-making problems and the practical requirements of decision knowledge push of decision makers. The research is structured as follows: firstly, a theoretical architecture of multi-source knowledge fusion for decision knowledge integration and innovation is developed; then, the knowledge pretreatment method is proposed, preparing knowledge for multi-source decision knowledge fusion; next, the reinforcement learning-based model and methods are proposed to realize decision knowledge integration and innovation; lastly, a multi-source decision knowledge fusion sub-system is developed, and the proposed theoretical architecture and methodologies are realized and evaluated in a typical and practical case study. The main objective of this research project is to propose the methodologies and technologies of reinforcement learning-based multi-source decision knowledge fusion to realize decision knowledge push in complex decision-making problems, from the perspective of decision knowledge fusion. Creative and original research results are supposed to be achieved. It is also to cover the shortages of the existed decision support models and methods in the aspect of decision knowledge push in resolving the complex decision-making problems.
面向决策知识集成创新的多源知识融合方法研究,是根据目前国内外解决复杂决策问题相关理论与方法的研究发展动态,及复杂决策问题求解中对决策知识推送的实际需求而提炼出来的、具有大量实际背景的、新的研究课题。本项目的主要研究内容是:研究面向决策知识集成创新的多源知识融合的理论框架,提出多源决策知识预处理方法、多源决策知识融合的强化学习模型及求解算法;进一步地,开发多源决策知识融合子系统的原型系统,并以现实中若干典型复杂决策问题为背景,针对求解过程中对决策知识推送的需求,进行有针对性的理论框架、方法与应用研究。本项目的研究目的是:基于多源决策知识融合的视角,立足解决复杂决策问题求解时需要多源决策知识推送的问题,提出面向多源决策知识集成创新的基于强化学习的多源知识融合方法与技术,拟取得高水平的、创新性的研究成果,弥补目前已有的决策模型和决策方法在决策知识推送方面的不足。
本项目考虑了面向决策知识集成创新的多源知识融合问题,针对这一问题的研究具有重要的理论意义和实际意义。通过近三年来的研究工作的开展,我们取得了较为丰硕的研究成果,主要体现在四个方面。首先,我们提出了多源决策知识融合的理论框架研究;其次,我们提出了三种多源决策知识预处理方法;第三,我们建立了多源决策知识融合的强化学习模型并提出了相应的模型求解方法;最后,我们针对典型复杂决策问题求解的多源决策知识融合方法展开了相应的应用研究。通过本项目的实施,我们较好地完成了预期制定的研究计划,达到了预期目标。在项目资助期间,发表(含录用)学术论文共10篇,其中在Expert Systems with Applications、British Food Journal等国际重要期刊上发表论文3篇;在《系统工程理论与实践》、《中国管理科学》等国内重要期刊上发表论文4篇;协助樊治平教授培养硕士研究生5人。本项目研究工作的完成,对进一步发展和完善面向决策知识集成创新的多源知识融合理论与方法做出了一定的贡献。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于多模态信息特征融合的犯罪预测算法研究
基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
服务经济时代新动能将由技术和服务共同驱动
基于协同表示的图嵌入鉴别分析在人脸识别中的应用
面向开放知识源的知识碎片分面聚合方法研究
面向集成创新的功能知识综合与行为预测建模
面向产业集成创新的区域知识承载力评价与培育研究
跨界融合下企业知识网络的知识配置、整合与创新研究