几类非负张量有向超图性质的研究

基本信息
批准号:11526083
项目类别:数学天元基金项目
资助金额:3.00
负责人:崔鲁宾
学科分类:
依托单位:河南师范大学
批准年份:2015
结题年份:2016
起止时间:2016-01-01 - 2016-12-31
项目状态: 已结题
项目参与者:陈光周,王亚娟,喻云婷
关键词:
特征向量不可约非负张量有向超图算法
结项摘要

The numerical analysis for nonnegative tensors is one of hot topic in the field of computational mathematics. The nonnegative tensors have good spectral properties. The spectral radius is an eigenvalue of nonnegative tensor. And the spectral radius has an unique positive eigenvector if the tensor is irreducible. Although the weakly irreducible tensor also has this spectral property, the eigenvalue which has an nonnegative eigenvector may not be the spectral radius. It is notice that the irreducibility is just only a sufficient condition for an nonnegative tensor has a positive spectral eigenvector. In this project, we will give a necessary and sufficient condition for a nonnegative has a positive spectral eigenvector. The properties of irreducibility and having positive spectral eigenvector are the structure properties of nonnegative tensors. The directed hypergraph is one of useful tool for studying the structure properties of non- negative tensors. This project will study the relationship between edges, path of directed hypergraph and the nonnegative entries of nonnegative tensor and give the equivalent condition of irreducibility in directed hypergraph theory. And we will design new algorithm for testing the irreducibility of an nonnegative tensor and give the computational complexity of the new algorithm. The project will also study the necessary and sufficient condition for an nonnegative tensor has a positive spectral eigenvector by studying the relationship between the block expression of eigen-equation and the classification of directed hypergraph.

非负张量的数值分析是近年来国内外计算数学领域的热点课题之一。非负张量有良好的谱性质,谱半径是特征值,并且非负不可约张量的谱半径有唯一的正特征向量。弱不可约张量虽然也有这个谱性质,但是有非负特征向量的特征值不一定是谱半径。所以给出不可约性的等价描述是有意义的。另外,不可约性只是非负张量有正的谱特征向量的充分条件。因此,本项目将研究非负张量有正的谱特征向量的充要条件。不可约性及有正的谱特征向量是非负张量的结构性质。而非负张量的有向超图是研究非负张量结构性质的有力工具之一。因此,本项目将通过研究有向超图中的边、路径等与非负张量元素之间的关系给出不可约张量在有向超图理论中的等价条件;并且将结合不可约张量的有向超图性质设计验证不可约性的新算法并给出复杂度分析。另外,本项目将研究非负张量的特征方程的分块表达式与有向超图中分类的关系,给出非负张量有正的谱特征向量的充要条件。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

低轨卫星通信信道分配策略

低轨卫星通信信道分配策略

DOI:10.12068/j.issn.1005-3026.2019.06.009
发表时间:2019
3

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

DOI:10.19596/j.cnki.1001-246x.8419
发表时间:2022
4

物联网中区块链技术的应用与挑战

物联网中区块链技术的应用与挑战

DOI:10.3969/j.issn.0255-8297.2020.01.002
发表时间:2020
5

一种改进的多目标正余弦优化算法

一种改进的多目标正余弦优化算法

DOI:
发表时间:2019

崔鲁宾的其他基金

相似国自然基金

1

非负张量和超图的谱对称性与稳定性研究

批准号:11871073
批准年份:2018
负责人:范益政
学科分类:A0408
资助金额:52.00
项目类别:面上项目
2

概率方法在超图与有向图划分中的应用

批准号:11801149
批准年份:2018
负责人:毋述斐
学科分类:A0409
资助金额:24.00
项目类别:青年科学基金项目
3

边染色图与有向图中的几类极值问题

批准号:11871311
批准年份:2018
负责人:王光辉
学科分类:A0409
资助金额:52.00
项目类别:面上项目
4

超图的张量谱半径研究

批准号:11801410
批准年份:2018
负责人:林鸿莺
学科分类:A0408
资助金额:26.00
项目类别:青年科学基金项目