Due to the satisfactory current drivability and reduced short channel effect, stacked gate-all-around nanowire (SGAA NW) devices are considered to be a better solution for the continuation of Moore's Law after 5 nm node. Research on the radiation damage of SGAA NW devices is the essential requirement for high-speed, high-density integrated circuits in space, accelerator, and nuclear power plant over the next 20 years. SGAA NW devices are characterized by extremely small pitch, complicated gate stack and composition, and obvious self-heating effect, etc. But the meantime, the irradiation damage mechanism is not yet clear, and the hardness strategy of total dose radiation should be proposed as soon as possible. The use of SGAA NW devices in harsh radiation environment is of great significance with respect of electrical and thermodynamic evolution, trapping mechanism of the trap charges from local oxidation around the channel, and the establishment of a "quantized annealing strategy" restricted by thermal reliability. The project will focus on three-dimensional modeling of radiation damage, irradiation mechanism with high and low total ionizing doses, synergy effect from radiation and heat, enhanced radiation effect from local oxidation around the channel, self-repairing mechanism by thermal annealing effect, as well as the strategy of quantized electrical stress for annealing process. The outcomes of the research will accumulate theoretical basis and technical support for the radiation mechanism and hardness strategy of SGAA NW devices below 5 nm node.
堆叠纳米线围栅器件因具有良好的驱动和短沟道效应控制能力被认为是5nm工艺节点后延续摩尔定律的较好方案。对该器件的辐射损伤机理开展研究是未来20年空间科学、加速器和核电站运行和维护对高速高密度集成电路的基本要求。该器件因具有线条极小、栅堆叠结构和材料成分复杂、自加热效应明显等特点,其总剂量辐射损伤的机理尚不明晰,对该器件的辐射加固方法尚待完善。探索该器件在辐射环境下的电学与热力学演化规律,研究“沟道局部氧化”区域对陷阱电荷的俘获机理,建立“热可靠性”受限的“定量加热退火策略”,对明确该器件的辐射适应性意义重大。本项目将围绕辐射损伤的三维空间建模、高低电离总剂量下不同的辐射响应机理、热与辐射的协同效应、“沟道局部氧化”导致的辐射效应增强、“热退火修复机制”与定量调控策略等研究内容开展工作。该研究将为5nm节点以下堆叠纳米线围栅器件的辐射机理及加固方法提供重要的理论基础和技术支持。
多栅与环栅器件具有良好的驱动和短沟道效应控制能力,是5nm工艺节点后延续摩尔定律的方案之一。针对多栅与环栅器件开展辐射损伤机理研究将为未来二十年空间科学、加速器和核电站中使用的高速高密度集成电路奠定重要基础。但由于该器件特征尺寸极小、栅堆叠结构和材料成分复杂、自加热效应明显,其总剂量辐射损伤的机理尚不明晰,器件的辐射加固方法尚待完善。本项目从总剂量效应测试、机理与建模研究,辐射-热协和效应机理研究和专用抗辐射加固技术研究三个方面开展技术攻关工作,为纳米节点抗辐射集成电路研制提供坚实的理论基础与技术支撑。在执行期(2019年1月-2022年12月)内,按照项目计划书完成了相关研究内容,共发表高质量SCI论文23篇,可靠性及辐射领域顶级会议论文23篇,申请专利3项,培养硕士研究生1人,博士研究生3人。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
特斯拉涡轮机运行性能研究综述
中国参与全球价值链的环境效应分析
钢筋混凝土带翼缘剪力墙破坏机理研究
感应不均匀介质的琼斯矩阵
微/纳机械器件的辐射损伤及其机理研究
新型围栅硅纳米线MOS器件的涨落性与可靠性研究
无结围栅纳米线MOSFET的短沟道效应研究
基于物理场调控的单根二氧化锰纳米线微纳器件组装与储能增强机理