描述集合论作为"数理逻辑"中的一个方向,其研究对象是Polish空间上的各类型具有良好构造的子集,尤其是Borel集和解析集。利用描述集合论的工具:Borel归约,来刻画源于数学各个分支的等价关系之间的相对的复杂度,是当前描述集合论方向中的热点课题。.本项目拟研究源于Banach空间的等价关系在Borel归约下的复杂度,包括此类等价关系之间的相互归约,及它们相对于一系列标志性等价关系的Borel归约。最终确定此类等价关系在Borel归约结构中所处的确切位置。本项目的研究将从某些经典的Banach序列空间生成的等价关系入手,推广至一般的Banach序列空间。同时,也将寻求关于Banach函数空间生成的等价关系的研究方法。
本项目从事的是“数理逻辑”的一个分支“描述集合论”方向的研究工作。在过去的三年中,在Banach空间的闭子空间的交集运算的研究中取得的关键性的成果,并在Banach空间的闭子群的交集运算上取得了一些进展。项目组就源于Banach空间的等价关系之间的Borel归约做出了很好的成果。我们还将l_p类型等价关系和c_0类型等价关系的研究推广到一般的由Schauder基序列生成的等价关系。在一类拓扑空间与其上的连续函数空间之间的关系的研究中取得的好的成果。我们共发表SCI检索的学术论文四篇,组织国内学术会议1次,出国学术交流2人次,在国际学术会议上作学术报告2人次。三年中,培养博士后1人,博士生2人,硕士生2人。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例
多空间交互协同过滤推荐
卡斯特“网络社会理论”对于人文地理学的知识贡献-基于中外引文内容的分析与对比
近代租界城市日常空间生产与演化 以天津英租界休闲空间为例
序列空间生成的等价关系之间的 Borel 归约
等价关系在Borel归约意义下的复杂性
Banach空间的非线性商
Banach空间中的完备集