Bottom-up assembly of nanoparticles into two dimensional nanoparticles thin films is an effective approach for nanomaterials employed in ‘system integration and the functionalization of devices’. Due to the weak physical interaction, the conventional Au nanoparticles films fabricated at oil-water interface usually have a small size, and are non-uniform, unstable, easily breakable and difficultly transferred, which has severely limited their fundamental research and practical applications. In this project, we will report the introduce of the chemical bond between adjunct particles in the film by polymerization or chemical cross-linking strategy, to achieve large-scale gold nanoparticle film with intelligently excellent free-standing and easily transferable properties. For example, through photo-polymerization of double bond molecules, a chemically cross-linked film was formed with closely packed nanoparticles. The hyperbranched polyethyleneimine functionalized Au nanoparticles can be easily immersed into dopamine-polymerized system and tightly glued together, resulting in the extreme stability, excellent transferability, unbreakable and self-adhesive performances of freestanding 2D AuNPs film. In addition, the self-assembled Au nanoparticles film irradiated by laser light generates surface-plasmon-driven hot electron polymerization at the surfaces of Au nanoparticles, resulting in Janus polymer/Au nanoparticles thin film. We propose to reveal the chemical-crosslinking induced self-assembly mechanism of nanoparticles at the water/air or oil/ water interface and finely controlled structures and properties of ultrathin film, and to explore the optimized conditions and mechanism for surface-plasmon-driven hot electron polymerization. Finally, the designed polymer/Au nanoparticles thin films will be employed in flexible biosensors for bio-system detection.
以独立、无序纳米粒子自下而上构筑二维纳米膜是纳米科技迈进系统集成与器件功能化的有效途径。然而由于粒子间的弱物理相互作用,纳米金粒子薄膜存在面积小、不均质、易破碎和难转移等缺点,极大限制了其基础研究和实际应用。本项目拟在纳米金粒子界面组装过程中,引入高分子交联或聚合反应,实现粒子间的化学键作用,如引入粒子间的双键单体交联、纳米粒子与界面的多巴胺氧化自聚的交联反应,以及纳米金表面热电子引发Janus高分子刷接枝聚合反应,从而达到获取大面积、均质、易转移的二维自支撑性高分子/纳米金复合膜材料的目的。本项目研究将探索纳米粒子在水/空气与油/水界面的化学交联诱导的自组装新机理,二维纳米金膜的精细调控条件和纳米金二维膜表面热电子引发高分子接枝聚合的新方法。利用二维纳米膜中纳米金粒子和功能性高分子的协同效应,本项目将设计一系列用于生物快速检测的柔性生物传感器。
以独立、无序纳米粒子自下而上构筑二维纳米膜是纳米科技迈进系统集成与器件功能化的有效途径。然而由于粒子间的弱物理相互作用,纳米金粒子薄膜存在面积小、不均质、易破碎和难转移等缺点,极大限制了其基础研究和实际应用。本项目通过在纳米金粒子界面组装过程中,引入高分子交联或聚合反应,实现粒子间的化学键作用,如引入粒子间的双键单体交联、纳米粒子与界面的多巴胺氧化自聚的交联反应,从而获取了均质、易转移二维自支撑性高分子/纳米金复合膜材料。另外,从纳米粒子液-液界面组装机理出发,通过引入超疏水全氟配体,最大化降低动力学吸附势垒,实现了超快速宏观大面积二维单层膜的构建。利用二维纳米膜中纳米金粒子和功能性高分子的协同效应,本项目设计了一系列用于生物快速检测的柔性生物传感器,实现了对食品、药物、环境污染物的高灵敏检测。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
基于二维材料的自旋-轨道矩研究进展
基于混合优化方法的大口径主镜设计
内质网应激在抗肿瘤治疗中的作用及研究进展
一种加权距离连续K中心选址问题求解方法
无氟Ti3C2Tx/纳米纤维素柔性自支撑复合膜的构筑及其赝电容性能和机理研究
金纳米掺杂石墨烯复合物构筑生物分子固定界面及其电化学免疫传感器的应用
二维碳管/高分子弹性体非对称复合薄膜的界面构筑及其传感性能研究
以咪唑基二维共价有机框架构筑自支撑电解质膜