With the speed of ball screw getting more and more higher, the machining efficiency has been greatly improved. However, the temperature rise and thermal deformation of the ball screw are more prominent than ever before. And also the thermal deformation directly affects the machining accuracy of machine tools. Therefore, high-speed precise ball screws will be taken as the research object in the project. Firstly, the theoretical model of heat flow and contact thermal resistance will be established. On that basis, thermal-mechanical coupling model will be developed. Considering the effect of uncertainty of structural parameters and microscopic fractal parameters of the interfaces caused by machining error, the uncertainty of thermal deformation will be studied based on the interval model. As the aramid fiber has negative thermal expansion coefficient, the adaptive method to reduce thermal deformation of ball screw will be proposed. The improved ball screw will be designed. Secondly, Kriging-based optimization for improved ball screws will be conducted. Combined with the engineering practice, optimal design parameters will be obtained. Finally, Key theory and methods will be verified by the experimental study. The relationship among mechanical-thermal parameters of ball screws will be revealed, and the thermal deformation mechanism of high-speed precise ball screws will be clarified. The interval method of thermal deformation of ball screws will be proposed. A practical, effective and adaptive method to reduce thermal deformation of high-speed precise ball screws will be put forward. The project has scientific significance and engineering value to promoting high speed, high accuracy and high intelligence of modern manufacturing equipments.
滚珠丝杠副高速化在大幅提高加工效率的同时也带来了温升和热变形等诸多问题,而热变形直接影响机床加工精度。因此,本项目以高速精密滚珠丝杠副为研究对象,建立其发热强度和接触热阻模型,进一步建立热机耦合模型。考虑加工误差引起的结构参数和微观表面形貌特征参数的不确定性,基于区间模型对丝杠副热变形的不确定性进行分析;根据芳纶纤维受热收缩的特性,提出滚珠丝杠副热变形自适应抑制方法,设计改进型丝杠副。在此基础上,采用Kriging代理模型对改进型丝杠副设计参数进行优化,结合工程实际获得关键设计参数的最优值;最后,对关键理论和方法的正确性和可行性进行验证。项目预期揭示滚珠丝杠副热机参数之间的内在物理关系,阐明高速精密滚珠丝杠副热变形机理,提出滚珠丝杠副热变形区间计算方法。提出一种切实有效的高速精密滚珠丝杠副热变形自适应抑制方法,对于推动和促进现代制造装备的高速化、精密化、智能化具有重要的科学意义和工程价值。
滚珠丝杠副高速化在大幅提高加工效率的同时也带来了温升和热变形等诸多问题,而热变形直接影响机床加工精度。因此,本项目以高速精密滚珠丝杠副为研究对象,建立了其发热强度和接触热阻模型,进一步建立热机耦合模型。考虑加工误差引起的结构参数的不确定性和滚珠承载分布,基于区间模型对丝杠副热阻的不确定性进行了分析,进而对丝杠副热变形精确求解;根据负热膨胀系数材料受热收缩的特性,提出了滚珠丝杠副热变形自适应抑制方法,设计改进型丝杠副。在此基础上,采用Kriging代理模型对改进型丝杠副设计参数进行优化,结合工程实际获得关键设计参数的最优值;最后,对关键理论和方法的正确性和可行性进行了验证。项目揭示了滚珠丝杠副热机参数之间的内在物理关系,阐明了高速精密滚珠丝杠副热变形机理。提出了一种切实有效的高速精密滚珠丝杠副热变形自适应抑制方法,对于推动和促进现代制造装备的高速化、精密化、智能化具有重要的科学意义和工程价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
滚动直线导轨副静刚度试验装置设计
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
TGF-β1-Smad2/3信号转导通路在百草枯中毒致肺纤维化中的作用
精密滚珠丝杠副预紧力退化机理及预测方法研究
高速滚珠丝杠副滚珠循环系统动力学分析与试验研究
精密滚珠丝杠副精度失效机理及加工工艺特性研究
基于深度学习的精密滚珠丝杠副服役性能退化过程状态评估及预测方法研究