With the rapid development of portable and wearing equipment and the wide application of flexible electronic system, flexible RRAM has been one of the important development directions in the information memory field. Aiming to the demand of flexible RRAM applications in CMOS integrated circuits, this project will fabricate flexible RRAM with self-rectifying effect to realize high density crossbar integration without any electrical interference from adjacent cells, together with having excellent resistive switching properties and mechanical flexibility. In this proposal, transition metal oxide bi-layer structure films will be introduced as the functional layer. Through precisely controlling the design parameters of thickness, oxygen content, band gap and the matching with electrodes for barrier layer and resistive switching layer, we expect to obtain self-rectifying RRAM. Meanwhile, The regulation rule of performance for flexible RRAM with bi-layer structure and the self-rectifying mechanism will be revealed. Furthermore, supercritical fluid technology with the property of low temperature will be adopted to enhance the resistive switching performance and mechanical flexibility as well as rectifying ratio. The condition and reason of improving the comprehensive performance by supercritical fluid technology will be disclosed. Based on the above researches, flexible RRAM arrays with self-rectifying effect will be fabricated and integration memory arrays without any adjacent electrical interference will be verified. The smooth implementation of this project will not only provide the theoretical and experimental evidences for the research of flexible RRAM with self-rectifying effect, but also have significant scientific meaning for flexible high density RRAM integration and application in the future.
随着便携、可穿戴式设备的飞速发展以及柔性电子系统的广泛应用,存储器的柔性化是未来信息存储领域的重要发展方向之一。本项目针对柔性阻变存储器(RRAM)在CMOS电路中的应用需求,在确保其优异存储性能和机械柔韧性的同时,拟构筑具有自整流效应的柔性RRAM来实现抗串扰的交叉阵列集成。采用过渡金属氧化物双层膜结构作为器件功能层,通过精确控制势垒层和阻变层厚度、氧含量、禁带宽度、电极匹配等设计参数来调控柔性RRAM的阻变特性,获得自整流效应;揭示其阻变性能的调控规律和器件自整流机理。创新性地运用低温超临界流体技术提升柔性自整流RRAM的阻变性能、机械柔韧性和整流比,阐明该技术优化器件综合存储性能的作用机理。在此基础上,完成柔性自整流存储器阵列的制备并验证其抗串扰能力。该项目的顺利实施,为新型柔性自整流RRAM器件的研发提供有力的理论及实验依据,对未来高密度柔性化的RRAM集成和应用具有重要科学意义。
阻变存储器是当前微电子技术的研究热点,有望在高密度存储、类脑计算、人工智能等领域得到应用。项目负责人围绕柔性阻变存储器的设计和制备、性能优化和高密度集成等共性科学问题开展研究。揭示了由氧空位形成和再分布主导的阻变机理;提出了功能层掺杂、电极工程、多场调控的性能优化策略,解决了器件功耗高、一致性差、可靠性低等问题;精确调控薄膜中氧空位,获得了高性能柔性选通管和存储器。上述创新思想和成果为阻变存储器设计、性能优化和集成提供了科学依据,为高密度存储及柔性化应用奠定了基础。项目执行期间在Adv. Func. Mater.、Small、Adv. Electron. Mater.等国际期刊发表论文20余篇。入选了湖北省高层次人才工程、湖北省杰青基金人才。该项目针对存储器柔性化关键技术的研究,研制了高性能、低功耗、抗弯曲、无串扰的柔性忆阻器及阵列,为柔性存储和类脑芯片开发提供硬件基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
拥堵路网交通流均衡分配模型
基于可变势垒的新型自整流超低功耗阻变存储器及其机理研究
相转变调控二维过渡金属硫化物基柔性阻变存储器阻变效应及其阻变机理研究
超低功耗柔性聚合物阻变存储器件及机理研究
基于二元金属氧化物的自整流阻变存储器及其物理机制研究