With the continuous expansion of the applications of MEMS devices and flexible electronic devices, to measure and characterize the mechanical and physical characteristics of these devices in practical environments is of great significance to study the mechanism of failure and reliability, fabrication process and engineering application. To overcome the difficulties upon test methods of mechanical characteristics in the traditional normal environments that cannot be applied to the complex abnormal environments, a dynamic imaging and characterization method of microstructural multi-physical field properties under complicated excitations is explored based on the principle of indirect vector parameter microscopic imaging in this project. The core idea is to use its sensitivity to anisotropy of the measured microstructure, and the coupling equation among microstructure physical parameters, variation of optical wave vector status, and near field and far field intensity variation is established under complex excitation, and the microstructure physical characteristics is further resolved based on far field intensity variation of the optical wave vector status. The research contents mainly include the mechanism of microstructure physical field on optical wave vector status under the complicated excitations, the dynamic sensing method of the microstructure physical field based on optical wave vector parameter imaging and the visual characterization system of the surface multi-physical fields under the complicated excitations. This project can provide a new measurement method for the test of microstructural mechanical properties under the complex abnormal environments, which can promote the development of sensing, detection and characterization technologies of mechanical and physical parameters at the micro-nano scale.
随着MEMS器件和柔性电子器件应用领域的不断拓展,测量和表征这些器件在实际使用环境下的力学和物理特性,对研究其失效机制和可靠性、制备工艺和工程应用均具有重要意义。本项目针对传统常态环境下的力学特性测量方法无法适用复杂非常态环境的难题,利用非直观光波参数显微成像原理,拟探索一种复杂激励下微结构多物理场特性的动态成像和表征方法。其核心思想是利用光波矢量参数对微结构各向异性的敏感性,建立复杂激励下微结构物理参量与光波矢量状态、近场和远场光场变化的耦合关系,基于光波矢量状态远场变化反演计算出近场微结构物理场特征。研究内容主要包括复杂激励作用下微结构物理场对光波矢量状态的作用机理、基于光波矢量参数成像的微结构物理场动态感知方法以及复杂激励下微结构表面多物理场可视化表征系统。本项目可为复杂非常态环境下微结构力学特性测试提供一种新的测量手段,推动微纳尺度下有关力学和物理参量的传感、检测与表征技术的发展。
基于非直观光波参数的微结构多物理场特性成像方法具有非接触、分辨率高及全场测量等优点,在无损检测、微纳力学表征等领域具有良好的应用前景。本项目针对传统常态环境下的力学特性测量方法无法适用复杂非常态环境的难题,提出了一种适用于复杂激励作用下微结构多物理场特性的非直观光波参数动态成像方法,对超声、热-力耦合作用下微结构物理场对光波矢量状态的作用机理、微结构物理场的光波矢量参数成像方法及多物理场可视化表征系统等进行了研究。通过建立由应变引起三维各向异性折射率变化的理论模型及基于光波偏振状态变化的非直观光波参数模型,揭示了微结构应力场对光波矢量状态的作用机理及非直观光波参数与主应力差、切应力的关系,并通过实验验证了非直观光波参数系统对超声场和应变场成像的敏感性;提出了一种超声应力场的频闪偏振参数动态成像方法,实现了对应变场和超声场的解析和成像,与仿真结果非常吻合;开展了热-力耦合作用下微结构应力场的非直观光波参数成像研究,提出了一种用于应力场偏振参数成像的结构与光场联合仿真方法,实现了对应力场偏振参数动态成像的仿真分析,并搭建了热-力耦合作用下微结构应力场的非直观光波参数成像系统,实现了对微结构应变场的成像和表征;开展了各向同性透明材料的光弹性常数测量及MEMS电热驱动器样品测试应用研究。本项目的研究为微结构应变场和声场的检测提供了一种新的测量手段,有助于推动微纳尺度下有关力学和物理参量的传感、检测与表征技术的发展。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
低轨卫星通信信道分配策略
气载放射性碘采样测量方法研究进展
矢量光场多自由度调控的非直观光波参数超分辨动态成像方法研究
基于非直观光波参数光折变晶体干涉测量的物质结构及声场多维超分辨动态成像
生物膜式反应器内复杂热物理参数动态场分布的多尺度实时测量方法研究
内外激励耦合下的复杂齿轮传动系统动态特性与诊断方法研究