Bio-inspired smart nanochannel materials have attracted extensive research interests in recent years owing to their wide potential applications in energy conversion, mass transport, and biosensors. However, the on-off switching of external stimuli is essential to instigate the intelligent gating functions of the bio-inspired nanochannels. Inspired by the autonomous oscillation behaviors such as heartbeat, brain waves, cell cycle, and biorhythm in living system, in this project, we will build bio-inspired self-gating nanochannels based on chemical oscillating reactions. Specifically, we will try to replace the conventional on-off switching of external stimuli with oscillating reactions and construct an autonomously, cyclicly and reversibly switchable nanochannel system via using the oscillating reactions as the driven sources of bio-inspired nanochannels. The self-gating nanochannels can exhibit spontaneous and autonomous periodic opening–closing changes under constant reaction solutions without any on–off switching of external stimuli. And then the self-oscillating ion transport properties will be characterized by measuring the transmembrane currents or potentials of the nanochannels. The applicant will build a novel autonomously gating biomimetic smart nanochannel system for the first time by combinations of the bio-inspired nanochannels with the oscillating reactions. This smart system will play an important role in building smart mass transport nanodevices, as well as open a new avenue to mimic the self-oscillation behaviors in living systems.
仿生智能纳米通道材料因其在能量转换、物质传输以及生物传感等领域有着广阔的应用前景,近年来引起广泛的研究兴趣。然而,目前仿生纳米通道智能门控功能的实现都需要提供外界的“开/关”刺激。受生命体系中如心跳、生物节律、脑电波、细胞循环等自振荡现象的启发,本项目拟开展基于化学振荡反应的仿生自门控纳米通道研究。通过将化学振荡反应替换传统的外界“开/关”刺激,作为仿生纳米通道“打开”与“关闭”的驱动源,构建一种自主、循环、可逆门控的仿生纳米通道体系。该自门控纳米通道体系能在没有外界刺激的封闭的振荡反应物溶液中自发实现周期且有规律门控现象,并利用测定通道跨膜电流或电势的方法来表征其自振荡的智能离子传输过程。本计划首次将振荡反应与纳米通道相结合,构筑了一种新型的仿生自主门控的纳米通道体系,将对发展智能传质纳米器件具有重要意义,同时为模拟生物体系的自振荡现象开辟一条新途径。
受生命体系中如心跳、生物节律、脑电波、细胞循环等自振荡现象的启发,本项目开展了基于化学振荡反应的仿生自门控纳米通道研究。通过将化学振荡反应替换传统的外界“开/关”刺激,作为仿生纳米通道“打开”与“关闭”的驱动源,构建了一系列具有自主、循环、可逆门控功能的仿生单纳米通道体系。这些自门控单纳米通道体系能在没有外界刺激的封闭的振荡反应物溶液中自发实现周期且有规律门控现象,并利用测定通道跨膜电流或电势的方法来表征其自振荡的智能离子传输过程。此外,还构筑了自门控纳米流体器件应用于可控药物释放。在本项目的支持下,已经在国际学术期刊上发表学术论文7篇,包括1篇J. Am. Chem. Soc.,1篇Adv. Funct. Mater.,1篇ACS Nano, 1篇Nano Today,1篇ACS Appl. Mater. Interfaces,1篇Small,以及1篇Nanoscale。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
多源数据驱动CNN-GRU模型的公交客流量分类预测
内质网应激在抗肿瘤治疗中的作用及研究进展
上转换纳米材料在光动力疗法中的研究进展
煤/生物质流态化富氧燃烧的CO_2富集特性
基于非对称浸润性的仿生纳米通道:智能门控机理和器件研究
基于TiO2纳米通道阵列的仿生响应性研究
机械门控Piezo通道的离子通透与机械门控机制研究
电压门控性钾通道电压门控机制的新探索