For the demands of the capture and reuse of evaporated aldehyde VOCs, a novel hydrophobic porous carbon supported reduced TiO2 composite (R-TiO2@N-G/C) is proposed to the application of aldehyde volatile organic compounds capture by using coupling mechanisms of "catalysis and adsorption" techniques in this proposal. The R-TiO2@N-G/C composite contains high catalyst active sites from reduced TiO2 and high selective adsorption sites from N-doped hydrophobic surface, which can first convert aldehyde VOCs into acid VOCs and then adsorb them. It will improve the selective adsorption capacity for the aldehyde. This is the creativity and feature of this proposal. This proposal puts the emphasis on the following three parts: (1) the coupling mechnisms of "catalysis and adsorption" will be investigated for aldehyde VOCs capture; (2) the effects of the catalysis active sites, pore structure and surface chemical properties of the R-TiO2@N-G/C composite on the aldehydes catalytic activity, adsorption phase equilibrium and dynamics of aldehyde/acid VOCs vapor as well as the competitive adsorption of aldehyde/acid VOCs and water mixtures will be investigated at the theoretical layer; (3) the preparation methods of the difunctional R-TiO2@N-G/C composite materials with high activity and adsorption for aldehydes VOC vapors will be investigated at the technical layer; (4) the "catalysis and adsorption" coupling process of aldehydes VOC vapors capture using the R-TiO2@N-G/C dual-functional materials under high humid surroundings will be inverstigated at the application layer. The research achievements can provide some useful information on the preparation of the metal oxide supported dual-functional porous carbon with high performance for aldehydes VOC vapors capture from high humid environments, which has important academic values and practical significance.
针对醛类VOCs污染控制的迫切需求,本项目提出构建“催化-吸附耦合”新机制,研制对醛类VOCs高选择催化和吸附的R-TiO2@N-G/C复合多孔材料。此材料同时含有高选择性催化和吸附双位点,可将醛类VOCs催化成酸再吸附,以提高材料对醛类VOCs的优势吸附,这是本项目立项的新意和特色之处。涉及从理论层面,研究负载型R-TiO2@N-G/C材料对醛类VOCs的催化-吸附耦合机制,揭示材料催化位点、复合多孔炭的孔结构和表面化学性质对醛类VOCs催化活性及其产物与H2O的竞争吸附关系。从技术层面,系统掌握R-TiO2@N-G/C的合成技术和工艺优化,研制出对醛类VOCs具有高选择性捕获的双功能吸附剂,并以R-TiO2@N-G/C材料为基础建立对醛类VOCs高效捕获的新过程。项目成果将为解决高湿下醛类VOCs污染控制和回收这一难题提供新的理论基础和技术支持,项目研究具有重要的科学价值和实际意义。
针对醛类VOCs污染控制的迫切需求,本项目提出构建“催化-吸附耦合”新机制,研制对醛类VOCs高选择催化和吸附的R-TiO2@N-G/C复合多孔材料。此材料同时含有高选择性催化和吸附双位点,可将醛类VOCs催化成酸再吸附,以提高材料对醛类VOCs的优势吸附。项目实施过程中(1)提出了一种吡咯N和Zn原位共掺杂水热法制备改性MIL-125(Ti)的策略,采用异质元素修饰对光催化剂电子结构的调节机制,实现对材料内光生载流子的转移路径的调控过程,而研发出高抗湿性和高光催化活性的新型光催化剂;(2)通过多巴胺桥连将TiO2与石墨化炭复合制得新型N-掺杂TiO2/C材料,通过吸附-光催协同机制高效降解低浓度甲醛;(3) 提出离子液体合成高缺陷的聚苯胺/NH2-MIL-125复合光催化剂,能实现高湿下对乙醛的高效降解;(4)提出采用MOF配体侨联的UCNP/NH2-MIL-125复合光催化剂的高效复合,强化复合界面形成Z型异质结,实现光的上转换利用。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
Identification of the starting reaction position in the hydrogenation of (N-ethyl)carbazole over Raney-Ni
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于海洋贻贝副产的聚多巴胺为碳源制备憎水性多孔碳及其对烃类VOCs/H2O选择吸附性能
贵金属限域MOFs材料对醛类-苯系物VOCs复合污染物的定向吸附-光催化降解
新型醛类VOCs高吸附容量的Amine@MOFs材料的研制及其吸附机理研究
多孔海藻酸钠吸附剂的合成及其对Pd(ІІ)的选择吸附机理研究