Reliability is the key element restricting the improvement of power/torque density of high-performance permanent magnet(PM) motors in applications of aerospace, transportation vehicles, national defense etc. As the motor mainly works under non-stationary load conditions, the traditional design base on rated conditions cannot satisfy the requirements. As a result, the study of reliability design under non-stationary load conditions is of critical importance to systematic optimization. Based on the stress-strength interference model, the probability distribution of non-stationary stress field is investigated; the service reliability model under random loads of the key materials and components, like motor insulation and PM, is studied; the dynamicly distributed model of multi-field coupling PM motor under non-stationary stress is established; the motor reliability design criteria based on damage consistency criterion is set up. Finally the global optimization algorithm based on reliability of non-stationary-load-conditioned PM motor is proposed. Meanwhile the sampling theory and experimental methodology of reliability evaluation and verification is studied, the simulation and testing platform is established, high power density PM motor is then developed, and theoretical achievements are verified and improved through field data statistics and lab experiments. This project greatly facilitates the development of motor reliability design theory of our country, the improvement of the design level of high power density motor, and the quantitative redundancy optimization of the advanced equipment in our country.
可靠性是制约航空航天、载运工具、国防等领域高性能永磁电机功率/转矩密度提升的关键要素。由于其大多在非平稳荷载条件下工作,传统的基于额定工况的设计方法不能满足要求,因而研究非平稳荷载条件下的可靠性设计对于其系统优化非常必要。本项目基于应力强度干涉模型,通过对非平稳应力场概率分布以及电机绝缘和永磁体等关键材料、关键零部件的随机荷载条件下的服役可靠性模型研究,建立非平稳应力条件下永磁电机多物理场耦合的动态分布式模型,以及基于损伤一致性原则的电机可靠性设计准则,在此基础上提出非平稳荷载永磁电机基于可靠性的全局优化算法。同时研究可靠性评定与验证试验的抽样理论与试验方法,搭建仿真与试验平台,研发高功率密度的永磁电机,通过现场数据统计和实验室试验对理论成果进行验证与完善。本项目的研究将形成我国自主的电机可靠性设计理论,提升我国高功率密度电机的设计水平,并为我国先进装备系统冗余的定量优化提供支撑。
可靠性是制约航空航天、载运工具、国防等领域高性能永磁电机功率/转矩密度提升的关键要素。由于其大多在非平稳荷载条件下工作,传统的基于额定工况的设计方法不能满足要求,因而研究非平稳荷载条件下的可靠性设计对于其系统优化非常必要。本项目基于应力强度干涉模型,通过对非平稳应力场概率分布以及电机绝缘和永磁体等关键材料、关键零部件的随机荷载条件下的服役可靠性模型研究,建立非平稳应力条件下永磁电机多物理场耦合的动态分布式模型,以及基于损伤一致性原则的电机可靠性设计准则,在此基础上提出非平稳荷载永磁电机基于可靠性的全局优化算法。同时研究可靠性评定与验证试验的抽样理论与试验方法,搭建仿真与试验平台,研发高功率密度的永磁电机,通过现场数据统计和实验室试验对理论成果进行验证与完善。本项目的研究将形成我国自主的电机可靠性设计理论,提升我国高功率密度电机的设计水平,并为我国先进装备系统冗余的定量优化提供支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
硬件木马:关键问题研究进展及新动向
滚动直线导轨副静刚度试验装置设计
一种改进的多目标正余弦优化算法
基于混合优化方法的大口径主镜设计
变可信度近似模型及其在复杂装备优化设计中的应用研究进展
可靠性约束下多电飞机飞控系统高功率密度电机设计理论与方法研究
磁悬浮永磁电机高速高功率密度转子多物理场优化设计方法
高功率密度双转子永磁容错电机系统的理论及关键技术研究
高性能永磁同步电机稳健设计理论与方法研究