Self-assembly of nano-microspheres is an effective approach to fabricate biomimetic microstructures with structural colors on textile surfaces. However, the usual immersion self-assembly of nano-microspheres is difficult to achieve a controlled even assembly, a large-area ordered assembly, and a selectively patterned assembly with structural colors. And, the immersion self-assembly shows obvious shortages, such as time-consuming, low-efficiency, difficult to accurate position. In addition, the biomimetic structure assembled by nano-microspheres on textile substrate is usually not stable enough to make durable structural colors required for industrial application. Therefore, in this project, a digital ink-jet printing self-assembly is proposed to replace the immersion self-assembly for accurate position, controlled ink-jet amount and rapid self-assembly of nano-microshperes on textile substrates to achieve biomimetic coloration. The structural stabilizers are also proposed to use for improving the binding strength between nano-microspheres and increasing the connecting fastness between textile substrate and the self-assembled structure of nano-microspheres. The research contents of this project include the design and preparation of nano-microspheres and the structural stabilizers, the preparation of structural-color ink systems, the surface modification of textile substrates, the fabrication of biomimetic structures with high stability and designed patterns on textile surface by digital ink-jet printing self-assembly method, and the investigation into the regulation mechanism of biomemetic structural colors, the stabilization mechanism of self-assembled structure, and the advanced theoretical study on structural coloration. The target of this project is to clarify the influence regularity of the ink-jet printing parameters and the assembly environment on the self-assembly process and behavior of the microspheres, reveal the stabilization mechanism of biomemetic microstructure, and eventually to establish a theoretical base for industrial application of biomimetic structural coloration through digital ink-jet printing.
纳米微球自组装是在纺织基材表面构建仿生微结构获得结构生色效果的有效方法。然而,通常的浸渍法自组装难以控制自组装结构的均匀性,不易获得大面积有序组装和图形化按需组装的结构色,且存在耗时长、效率低、难以精准定位等一系列明显的不足。同时,在柔性纺织基材上构建的纳米微球自组装结构稳定性较差,以致结构色的耐久性较差。本项目提出应用数码喷印技术实现纳米微球在纺织品表面的快速定量定位施加和自组装,应用结构稳定剂改善仿生结构中微球间的连接强度和微球与基材间的结合牢度。研究内容包括:纳米微球和结构稳定剂的设计与制备,结构色墨水体系的构建,纺织品基质表面的适应性改性,基于数码喷印的纺织基材表面图形化高稳定性物理生色结构的构建,仿生结构的调控和稳定化机制等深层次理论研究。期望通过该研究探明数码喷印条件下纳米微球的自组装行为,揭示自组装仿生微结构的稳定化机制,为纺织品数码印花仿生结构生色的工业化应用奠定理论基础。
胶体微球自组装是在柔性纺织基材上构建仿生物理生色结构的有效方法。然而,纺织品胶体微球自组装结构生色的工业化应用存在以下难点:1)自组装结构的稳定性较差;2)难以大面积快速有序组装;3)难以图形化组装。针对上述问题,本项目从以下四个方面开展深入研究,取得殊多原创性研究成果。.(1)结构基元纳米微球及结构稳定剂的设计与制备。设计和制备了多种具有特色的结构基元微球或预结晶微球体系,如:多巴胺包覆聚苯乙烯纳米微球(PS@PDA),空心SiO2纳米微球(HSiO2),软壳-硬核型纳米微球(PS@P(MMA-BA)),高度交联的耐热型PS纳米微球,水分散型液态光子晶体,光固化型液态光子晶体等;研究了三类结构稳定剂(小分子结构稳定剂,软质聚合物纳米粒子稳定剂,特种高分子稳定剂)的作用原理和构效关系。.(2)柔性纺织基材上物理生色结构的稳定化研究。研究了“点焊”粘结法、表面支撑固化法、空心微球光子晶体阵列法、软质壳层微球的融合固化法、光固化型液态光子晶体阵列的整体固化法、多层次复合光子晶体的界面分子迁移固化法等策略,研究稳定化过程及机制。其中,“多层次复合光子晶体的界面分子迁移固化法”利用底层特种高分子结构稳定剂的界面分子/链段迁移效应提高光子晶体的结构稳固性,实现高结构稳定性和高颜色饱和度的统一,且适用于连续化大面积组装。.(3)柔性纺织基材上物理生色结构的大面积快速组装研究。研制具有预结晶形态的液态光子晶体,通过理论计算阐明临界体积分数以上胶体微球自发结晶及稳定排列的机制,基于液态光子晶体的流动性和动态回复性研发了外力剪切诱导光子晶体的大面积快速组装技术。.(4)柔性纺织基材上图案化物理生色结构的构建。着重研究胶体微球墨水在喷印过程中易堵塞喷嘴的根本原因和解决策略,进而研制高浓度微球墨水和相应的喷印自组装过程及条件,建立柔性纺织基材上高稳定性图案化光子晶体生色结构的快速喷印组装方法。.
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
面向云工作流安全的任务调度方法
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
黑河上游森林生态系统植物水分来源
敏感性水利工程社会稳定风险演化SD模型
基于数码喷墨印花技术的柔性纺织品粗糙表面的可控三维光子晶体仿生结构生色研究
硅表面图形化掺杂及其对纳米结构自组装的影响
基于纳米层状构造的纤维仿生结构生色
蝴蝶鳞片结构生色理论在纺织品上的应用基础研究