Flammable and explosive gases are threatening the securities of people’s lives and properties in the petroleum and chemical industries. Moreover, toxic and detrimental gases, as well as the heavy metal elements and bacteria in water pollution, are gravely impairing people’s health. As a result, it is urgent to develop secure, reliable, and convenient techniques for fluid detection. Hollow-core photonic bandgap fibers (HC-PBFs) have unique air cores, which supply excellent micro-fluid channels and greatly enhance the interaction between the light and matter. Hence, HC-PBFs have extensive and promising prospects in the application of fluid detection..This project aims to research the key fabrication techniques for novel HC-PBFs and devices and explore their applications in the area of micro-fluid detection. The research will be carried out along the line “fiber – device – application”. At first, we will fabricate novel HC-PBFs with high photosensitivity, less air cladding, and large core diameter. And then, we will develop novel HC-PBF devices, such as fiber Bragg gratings, micro-channels, and so on. Finally, we will develop high-sensitivity gas, biological, and chemical probe sensors based on the HC-PBF devices, and use these sensors to realize the real-time detection for flammable and explosive gases, and toxic and detrimental materials, such as heavy metal elements, bacteria, and so on. .This project will be carried out by the close collaboration between Shenzhen University (SZU) and Harbin Engineering University (HEU). SZU will be responsible for researches on fiber devices and sensing applications, and HEU will be responsible for the research of fabrication techniques for novel HC-PBFs.
易燃易爆气体时刻威胁石油、化工等工业场所的生命和财产安全。有毒有害气体以及水污染中的重金属、细菌严重危害人类健康。面对上述重大民生需求,寻求安全可靠、方便快捷的检测技术迫在眉睫。空芯光子带隙光纤(HC-PBF)的空气芯是良好的微流通道,可以增强光和物质相互作用,在流体检测领域具有广泛应用前景。本项目拟研究新型HC-PBF及器件的关键制备技术及其在微流传感领域的应用。沿着“光纤——器件——应用”的思路,首先制备高光敏性、寡包层、大芯径的新型HC-PBF;然后研制基于HC-PBF的光纤布拉格光栅和微流通道等关键器件,最后研制基于HC-PBF的高灵敏度、探针式气体、生物和化学传感器。目的是利用HC-PBF增强光和物质相互作用,实现对易燃易爆气体、重金属、细菌等有毒有害物质的实时检测。本项目由深圳大学和哈尔滨工程大学联合完成,前者负责研究光纤器件和传感应用,后者负责研究新型HC-PBF制备技术。
本项目主要研究面向微流(气体和液体)传感的新型光子晶体光纤及器件的设计和制备技术,并研制基于新型光子晶体光纤的高灵敏度气体、化学和生物传感器。为了充分利用光子晶体光纤的空气芯增强光和物质的相互作用,首先研究新型光子晶体光纤的设计和制备技术,然后研究基于光子晶体光纤的器件的设计与制备,最后研究基于光子晶体光纤的传感技术及其在气体、化学和生物等微流传感领域的应用。..项目执行以来,在国际国内期刊论文120篇,其中 SCI一区4篇,SCI二区73篇,SCI三区33篇,SCI四区6篇,EI论文3篇,标注本自然科学基金项目资助120篇,标注率100%;申请发明专利25项,授权发明专利16项;培养博士后11名、博士生9名、硕士生20名;组建了“深圳市光学材料飞秒激光制备技术工程实验室”和“飞行器智能结构联合研究中心”;承办国际国内学术会议2次,共计250与人参会,团队成员参加学术会议100余人次(特邀报告30次)。..成功研制4种新型光子晶体光纤(悬芯光子晶体光纤、D型光子晶体光纤、偏孔双芯微结构光纤、双孔双芯微结构光纤),获得3种光子晶体光纤光栅(空心光子带隙长周期光纤光栅、手征光子晶体光纤光栅和悬芯光子晶体光纤光栅),获得4种光子晶体光纤微腔器件(空芯光子带隙光纤法布里-珀罗腔、空芯光子带隙光纤干涉型气流微通道、光子晶体光纤微流通道、空芯光纤高再现性微流激光器);提出并研制了基于光子晶体光纤的高灵敏度气体传感器(反谐振空芯光子带隙光纤乙炔气体传感器、反谐振空心光子带隙光纤气体压强传感器、空芯光子带隙光纤气体折射率传感器、级联空芯光子带隙光纤微腔传感器);提出并研制了基于光子晶体光纤的生化传感器(空芯光纤光微流激光折射率传感器、D型光子晶体光纤表面等离子体共振生物传感器、空芯光纤湿度不敏感温度传感器、光纤微流通道牛血清白蛋白生物传感器)。获深圳市自然科学奖一等奖。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
针灸治疗胃食管反流病的研究进展
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于光子带隙光纤的可调谐光电子器件
空气芯光子带隙光纤光栅
全固光子带隙光纤和光纤光栅研究
基于全固光子带隙光纤的微纳光纤与波导阵列光栅研究