The project proposes an innovative near-zero CO2 emission distributed combined cooling, heating and power generation system based on SOFC/GT, ammonia-water mixture absorption power/refrigeration and ammonia-water absorption chiller. The thermodynamic analysis is conducted to evaluate the thermodynamic characteristics and performance metrics and to investigate the optimal system configuration and matching by using the thermodynamic theory and principle of energy cascade utilization. The distributed mathematical model for SOFC is developed and the numerical simulation is performed to develop fast and effective method for the modeling and fault diagnosis of SOFC subsystem. Modeling and simulation are conducted on the subsystems of OTM-combustion, condensing CO2 capture and ammonia-water mixture absorption power/refrigeration and experimental study is performed to investigate the system performances and optimal configurations of the latter two sub-systems. A dynamic mathematical model for the entire total energy system is developed to investigate the unstead-state characteristics under transient operation and variable environmental conditions by employing the complex system theory and collaborative modeling method. The collaborative simulations are performed on the entire system by using the developed platform based on MATLAB/SIMULINK. The effective energy management method and optimal control strategy for the entire system are further proposed to achieve the optimal overall energy efficiency and minimum pollutant emissions based on the simulation results obtained in the collaborative simulation on the total energy system. The project would provide new information and knowledge and powerful simulation tool for the theoretical research, system design and optimal integration, reasonable system configuration, effective operating and fault diagnosis, and energy management and optimal control strategy. The results obtained in this project would be of significant importance for the research and development of efficient and environmentally-friendly distributed CCHP systems based on the SOFC/GT hybrid power systems.
本项目提出一种新的基于SOFC/GT与氨吸收式动力/制冷复合循环的CO2准零排放分布式冷热电联供系统。根据热力学理论和能的梯级利用原理,对该总能系统进行热力学分析与性能评价,探索其最佳构建模式和系统匹配;对SOFC子系统进行分布参数建模与仿真研究,发展快速有效的仿真方法及故障诊断理论;分别对氧气分离与燃烧、CO2捕集及氨吸收式动力/制冷复合循环子系统进行建模与仿真和优化研究及有关的实验研究;利用复杂系统的建模理论和协同仿真方法,建立整个总能系统的动态数学模型,发展基于MATLAB/SIMULINK的系统动态仿真平台和软件,在时变条件下,对其进行特性协同仿真研究与性能分析,探索总能系统的能量管理与优化控制策略。为基于SOFC/GT和氨吸收式动力/制冷复合循环的CO2准零排放分布式冷热电联供系统的基础研究、优化设计与集成、负荷合理配置及能量管理与优化控制策略提供新的理论基础和方法。
本项目构建了基于SOFC/GT和氨吸收式动力/制冷复合循环的CO2准零排冷热电联供系统,利用建立的数学模型和MATLAB与EES软件对其特性进行了热力学分析,得到了联供系统特性参数的主要影响因素及变化规律;根据热力学理论和能的梯级利用原理对联供系统进行了综合性能评价,研究了其最佳构建模式和系统匹配;对SOFC子系统进行了分布参数建模与仿真研究;对氧分离、CO2捕集及氨吸收式动力/制冷复合循环子系统进行了建模仿真和优化研究;利用复杂系统的建模理论和协同仿真方法,建立了整个联供系统的动态数学模型,发展了基于MATLAB/SIMULINK的系统动态仿真平台和软件,在时变条件下,对其进行了特性协同仿真与性能研究,并提出了联供系统的能量管理与优化控制策略;并对基于还原石墨烯的非贵金属材料燃料电池高效氧还原催化剂制备方法与特性进行了研究。课题取得的主要成果包括:在Applied Energy和Int.J.of Hydrogen Energy等国内外学术期刊上发表22篇研究论文(其中,SCI收录5篇,EI收录12篇),获得军队科技进步一等奖1项,已申请发明专利10项(已授权7项),课题组已申请到国家自然基金资助课题3项,培养博士生3名、硕士生6名,课题组所发展的冷热电联供系统特性仿真软件已被成功应用到有关冷热电联供项目的优化设计与分析。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
面向云工作流安全的任务调度方法
天津市农民工职业性肌肉骨骼疾患的患病及影响因素分析
可再生能源分布式冷热电联供系统优化设计与协同控制
基于正逆有机朗肯耦合循环的分布式冷热电联供系统机理研究
分布式冷热电联供系统全工况性能优化及主动调控机理研究
多能源互补分布式供能系统的集成优化与协同控制研究