The vibration waveform replication has become research focus and big bone problem in the electro-hydraulic vibration field, especially the waveform of high-frequency components and high energy. Many methods have been developed for solving some bottleneck problems, such as describing accurately dynamic process of the fluid power system or improving frequency response of the control valve to a great extent. The method and mechanism of parallel exciting valve group is first proposed and depth researched for controlling the electro-hydraulic vibration system to realize complex periodic vibration. The key issue is to solving some important and difficult problems, which are mainly establishing coupling dynamics model of hydraulic system, analysis valve group coupling facts and investigating decoupling control and compensate strategy. And further we will describe its advantages in vibration test of equipment in complex environment. On the basis of the above studies, mechanism that multi-controlled flow wave was synthesized complex periodic vibration will be proposed. And approximate analysis and experimental methods are used to verify. Through this project investigation, we expect that it will lead to innovations and breakthroughs for some aspects, i.e., harmonic suppression of vibration waveform, coupling characteristics of valve group, decoupling control and compensate strategy, nonlinear interferometer of hydraulic mechanism, etc. The basic research achievements will be obtained with both academic implication and practical value.
精确再现高频分量、大能量振动波形一直是电液振动控制技术的难点,发展了诸多方法,尝试解决精确描述流体动力系统动态过程、提高控制阀频响能力等瓶颈问题。本项目首次提出并开展并联激振阀组控制电液振动台实现复杂周期振动方法研究,重点解决液压动力机构耦合动力学数学模型的建立、并联激振阀组控制机理、解耦控制以及补偿方法等问题,阐明承受复合振动环境设备进行振动试验的优势。在上述研究的基础上,提出多受控流量波合成复杂周期振动实现与控制,运用近似解析和实验的方法进行验证。通过本项目的研究,可望在振动台谐波抑制结构、具有耦合关系的并联阀组的控制机理及设计理论、解耦控制方法及补偿算法、动力机构的非线性干涉等方面有所创新和突破,获得有学术意义和工程价值的基础性研究成果。
本研究以二维(2D)激振阀为核心部件,针对工程中能够高保真的实现大激振力、多频可调的复杂周期振动的振动装备的需求,基于三角多项式拟合函数轨迹的思想,提出了2D激振阀组驱动电液振动台实现复杂周期振动的新方法。为实现阀组精确控制振动波形的目标,首先,研究单个激振阀控制的电液振动台的频率特性,分低频、中频、高频三段简化系统模型,得到振动波形解析解,通过与实验对比得知,某些频段的振动波形受液压谐振影响严重,所以探明液压谐振机理,得到液压谐振频率与液压谐振幅值的解析表达式。通过分析振动波形被干扰原因,在此研究基础上提出并实现混合智能识别方法,然后,明确振动输出特性(幅值、频率)与二维(2D)激振阀输入参数(转速、轴向位移)之间精确关系,在此研究基础上对应用在本项目的2D激振阀结构进行改进,侧重点在驱动方式的改进,同时设计相应控制器,突破激振阀精确控制的难题,最后研究双阀阀组解耦控制,确定解耦矩阵。这种通过控制阀组实现复杂周期振动的液压振动的新方法,在拓展了振动试验的频率范围的基础上降低了系统的控制难度,其研究成果中谐振机理的揭示奠定了经典流体理论的液压系统谐振现象研究的理论基础,此外,系统的建模方法对于有耦合影响的多变量振动系统的建模提供了普遍的理论参考及实践运用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
拥堵路网交通流均衡分配模型
转录组与代谢联合解析红花槭叶片中青素苷变化机制
非线性影响下高速轧机机-电-液耦合系统振动机理与控制方法
基于振动与加载多元耦合的超冗余驱动电液系统协调控制研究
分段光滑振动系统的复杂分岔与混沌控制
具有振动局部化的失谐周期结构主动控制理论与方法