As the interdiscipline of wireless communication and control engineering, the cooperative charging method in wireless rechargeable sensor networks is a leading field in the current research of computer science. By applying wireless power transfer technology, electrical energy is wirelessly transferred from wireless charging vehicles to sensors, which provides a new way of prolonging the network lifetime. However, existing work on cooperative charging uses periodical and deterministic mechanism, which neglects the influences of the non-deterministic factors. Therefore, it is not suitable to be widely used for large-scale wireless rechargeable sensor networks. In this project, we summarize a series of key research issues on the cooperative charging, which aims at developing cooperative charging techniques for the large-scale wireless rechargeable sensor networks. These key research issues can be divided into three levels, namely 1) architecture designing level, how to establish the on-demand cooperative charging architecture for the large-scale wireless rechargeable sensor networks, 2) architecture scalability level, how to extend the on-demand architecture into multiple wireless charging vehicle application. 3) architecture optimization level, how to apply adaptive control methods to optimize the performance of the system. Based on recent research background, feasible solutions have been proposed. This project can improve the accuracy of the charging path planning, enhance the cooperative charging efficiency and prolong the network lifetime.
作为无线通信和控制工程的交叉领域,无线充电传感器网络的协同充电方法是国际学术界的最前沿研究领域。通过无线能量传输技术,充电车将电能以无线的方式传输给节点,为延长网络生存时间提供了新的途径。已有的研究成果通常采用周期性、确定性协同充电机制,忽视了非确定性因素对充电路径规划造成的影响,导致该技术难以在大规模无线充电传感器网络中推广。项目组在归纳现有研究成果基础上,围绕无线充电传感器网络协同充电机制的研究,凝练出一系列重点研究内容:1)框架设计层面,如何建立适用于大规模无线充电传感器网络的节点与充电车协同充电的点播式框架模型;2)框架扩展层面,如何将点播式充电框架扩展到多充电车协作充电应用中;3)框架优化层面,如何运用自适应控制方法优化系统性能。结合已有的研究基础,项目组拟定了切实可行的研究方案。该项目有望显著提高充电路径规划的精度、提高协同充电效率,延长网络生存时间。
本项目组围绕无线充电传感器网络实时任务调度问题展开研究,并取得了一系列研究成果,发表期刊、会议论文22篇,包括CCF A、B类高水平论文8篇,其中第一作者7篇,第二作者1篇。具体研究成果:1)框架设计层面,针对充电效率低下、充电路径固定问题,提出基于点播式实时充电调度算法TSCA,TADP,提高网络充电效率20%以上;2)框架扩展层面,针对网络的大规模部署问题,提出大规模充电车协同调度算法mTS,提高节点存活率8%;3)性能优化层面,针对充电路径抖动,充电任务固定问题,提出了基于最优化路径规划算法的充电策略OPPC,缩短充电路径31%。4)无线充电传感器网络系统开发层面,自主研发了一款无线充电试验床WCArm,实现充电车与节点间的高精度无线充电。项目的研究成果为网络生存时间研究、混合数据调度传输、自适应控制优化等研究提供理论框架和方法体系,具有较强的科学意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
跨社交网络用户对齐技术综述
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
城市轨道交通车站火灾情况下客流疏散能力评价
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
高动态无线可充电传感器网络充电规划研究
部分可充电的无线传感器网络的布置、路由和无线充电
大规模3D异构无线充电传感器网络可信方法研究
可无线充电的无线传感器网络跨层协议研究和设计