Considerable attentions have been paid to the novel hydrogels based on the conducting polymers. They exhibit both the swelling properties of hydrogels and the specific electrical properties of conducting polymers, which could be potentially applied in the fields of artificial muscles, electromechanical actuators, controlled drug release, and tissue engineering. Conducting polymer hydrogels are often synthesized by polymerizing conductive polymer monomer within a non-conducting hydrogel matrix or mixing the hydrogel component with the conducting component. However, the conducting polymer hydrogels fabricated by the conventional methods have shown serious disadvantages in terms of their mechanical, structural, and absorption properties. Many researchers have tried to improve the poor mechanical and electrical properties of conducting polymer hydrogels as well as their limited functional properties. .Encouraged by our previous work on the fabrication of conducting polymer hydrogels and the functionalization of graphene, great efforts will be made in this project to realize the functionalization of graphene grafted by polyanions and the fabrication of the hydrogels based on the composite of the conducting polymers and the grafted graphene. In this project, the polyanions will be prepared on the surface of graphene via surface-initiated atom transfer radical polymerization to improve the solubility of graphene. The reaction condition employed during the fabrication of the conducting composite hdrogels and the interaction between polyanion, graphene, and conducting polymer will be studied in detail. It will be focused on the effect of the external temperature or pH on the swelling properties of the as-prepared conducting composite hydrogels. Moreover, their behavior of controlled drug release in deionized water and in electrolytic solutions under the different potentials will be explored. It is expected that the mechanical and electrical properties of the hydrogels based on the composite of the conducting polymers and the grafted graphene will be improved greatly. They will show good characteristics for their application in controlled drug release because of their swelling ability. The fabrication of such composite hydrogels based on the conducting polymer and functionalized graphene may open a new avenue for future application in different types of controlled-release devices. .
本项目拟利用含有阴离子基团的水溶性聚合物对石墨烯进行接枝改性,改善石墨烯的溶解性能,进而实现聚阴离子接枝的石墨烯与导电高分子复合水凝胶的可控构筑。研究导电复合水凝胶在不同温度和不同pH溶液环境中的溶胀性能,提高导电复合水凝胶的电学性能与机械力学性能,解决这类水凝胶材料功能化、产业化亟待解决的问题。并进一步通过调控聚阴离子接枝石墨烯/导电高分子复合水凝胶的微观结构,研究导电复合水凝胶在不加电场与外加电场下对于特定药物的控制释放,分析外加电场大小与作用时间等因素对于控制释放行为的影响,对特定药物的控制释放机理进行探讨。该项目的成功实施,既能得到一类全新的聚阴离子接枝石墨烯/导电高分子复合水凝胶,又将把导电水凝胶材料的应用领域拓展到生物医用材料方面,为药物控制释放载体材料增添新的成员,进一步推动具有我国自主知识产权的新型药物控制释放体系的设计与构造。
本项目利用含有阴离子基团的水溶性聚合物对石墨烯进行接枝改性,改善石墨烯的溶解性能,进而实现聚阴离子接枝的石墨烯与导电高分子复合水凝胶的可控构筑。并合成了一系列聚吡咯及其石墨烯复合材料。研究了复合水凝胶在不同温度和不同pH溶液环境中的溶胀性能,提高导电复合水凝胶的电学性能与机械力学性能。并进一步通过调控聚阴离子接枝石墨烯/导电高分子复合水凝胶的微观结构,研究导电复合水凝胶在不加电场与外加电场下对于特定药物的控制释放,分析外加电场大小与作用时间等因素对于控制释放行为的影响,对特定药物的控制释放机理进行探讨。本项目积极与境内外高校、科研院所进行合作研究,相关研究工作与香港理工大学、南京大学共同开展。依托本研究,目前在Synthetic Metals、Composites Part B: Engineering、Polymer Bulletin、Journal of Macromolecular Science, Part B: Physics等杂志上发表SCI收录文章8篇,申请中国发明专利3项,独立指导研究生3名,协助指导研究生5名。该项目的成功实施,既得到一类全新的聚阴离子接枝石墨烯/导电高分子复合水凝胶,又把导电水凝胶材料的应用领域拓展到生物医用材料方面,为药物控制释放载体材料增添新的成员,进一步推动具有我国自主知识产权的新型药物控制释放体系的设计与构造。本项目基本完成了申请书的研究内容,达到了申请书所提到的目标。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
导电聚合物接枝石墨烯阵列的研究
导电水凝胶原位修饰石墨烯/SiOX-Si及储锂研究
多功能聚氨基酸纳米水凝胶的制备与药物控制释放应用
基于氧化石墨烯/黑磷复合水凝胶的抗肿瘤研究