Making use of lifting augmented effect near solid and water surface, a wing-in-ground effect (WIG) ship is able to achieve a speed of 200-300 kn about 1-6 m above the surface. It is thus called the Fourth Transportation Vehicle. Although having a potential for wide applications in the future, WIG ships encounter technological obstacles during their current development. The present project aims to solve the scientific problems present in the technological obstacles, which fall into two categories: aerodynamic lifting and hydrodynamic loading in face of complicated marine environment. The aerodynamic lifting involves the study of the lifting theory of a wing in ground effect in the presence of nonlinear water waves, unsteady incoming flows (gust) and viscosity. The hydrodynamic lifting involves the study of water-entry slamming loading, water-exit off-loading and impact by large waves experiences by a WIG ship during landing, taking-off and encounter with a large wave. Solutions to these scientific problems may help to tackle the technological obstacles. In the project, the lifting theory in the proximity of a smooth solid surface, which is the starting point, will be generalized to the one in the proximity of nonlinear water waves and unsteady incoming flows in the presence of viscosity. the theory and method will be testified in the towing tank. The hydrodynamic impact theory proposed by von Karman, which is the theoretical framework for hydrodynamic loading prediction, will be generalized to the general cases where a WIG ship enters into and exits from water in the presence of waves. Both theoretical models and computational methods are to be developed.
地效翼船利用地面增升效应,在海面上1-6米飞行,航速高达200-300节,是军民两用高科技船,被称为第四种交通工具。尽管应用前景广阔,但目前地效翼船的发展遇到技术障碍。本项目重点研究技术障碍中的关键科学问题,主要分为两部分:复杂海洋环境下地效翼船的气动升力研究与水动载荷研究。气动升力研究的是:非线性波浪海况下、非定常来流气象下、以及考虑粘性影响的地效翼升力理论;水动载荷研究的是:地效翼船入水砰击载荷、出水卸载与不稳定性、以及和波浪撞击产生的拍击载荷。这些科学问题的解决有助于突破技术障碍。项目研究以近固壁地效翼升力理论为基础,以水池模型试验为验证,通过和非线性波浪、非定常来流、粘性理论成果的结合,建立复杂海洋条件下近水面的地效翼升力理论;以Karman砰击理论为框架,以边界元法为工具,建立地效翼船入水砰击、出水卸载以及波浪拍击的理论模型和预报方法。
地效翼船利用地面增升效应,在海面上1-6米飞行,航速高达200-300节,是军民两用高科技船,被称为第四种交通工具。尽管应用前景广阔,但目前地效翼船的发展遇到技术障碍。.本项目重点研究技术障碍中的关键科学问题,主要分为两部分:复杂海洋环境下地效翼船的气动升力研究与水动载荷研究。项目研究以近固壁地效翼升力理论为基础,以水池模型试验为验证,通过和非线性波浪、非定常来流、粘性理论成果的结合,建立复杂海洋条件下近水面的地效翼升力理论;以Karman砰击理论为框架,以边界元法为工具,建立地效翼船入水砰击、出水卸载以及波浪拍击的理论模型和预报方法。.本项目获得了如下重要的成果。(1)获得了多个孤立水波解析解,有助于理解和描述复杂海洋环境中的非线性波浪的特性和传播;(2)以普朗特升力理论为基础的地效翼近水面波浪飞行时定常和非定常升力的理论模型与预报方法;(3)以涡格法为基础的非定常非线性尾涡演化计算方法;(4)结构出入水砰击载荷的预报方法以及基于BEM和SPH方法的数值预报技术;(5)基于离散涡方法考虑粘性时近自由表面飞行理论;(6)波浪拍击计算方法。.以上的成果以论文、专利、奖励、人才的形式体现。本项目发表该基金号标注的学术文章25篇,其中SCI索引16篇;另有两篇未标注基金号、SCI索引的相关论文2篇。专利授权一项、专利公开2项、专利申请3项;获得申请者牵头的2016年度高等学校自然科学二等奖一项;培养青年讲师三名,其中一名晋升为副教授;培养6名研究生获得博士学位;培养硕士生8名。对照申请书的技术指标,超额完成全部的项目任务书的要求。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
低轨卫星通信信道分配策略
钢筋混凝土带翼缘剪力墙破坏机理研究
基于非线性接触刚度的铰接/锁紧结构动力学建模方法
Wnt 信号通路在非小细胞肺癌中的研究进展
升力面气动弹性系统颤振复杂响应研究
农用无人空气动力船的复杂环境感知与避障控制方法研究
基于主旋翼非对称操纵的ABC直升机气动干扰、非定常气动载荷及性能优化研究
空化流动载荷作用下弹性水翼结构稳定性研究