The Inverse electron demand Diels-Alder reaction (or IEDDAR) is one of the most important organic chemical reactions. It is related to the Diels-Alder reaction, but unlike the Diels-Alder (or DA) reaction, the IEDDAR is a cycloaddition between an electron-rich dienophile and an electron-poor diene. IEDDA reactions often involve heteroatoms, and can be used to form heterocyclic compounds. This makes the IEDDA reaction particularly useful in natural product syntheses, where the target compounds often contain heterocycles. Recently, the IEDDAR has been used to synthesize artemisinin which is the key ingredient for the production of the most effective treatment against malaria-causing Plasmodium parasites. Compared to normal Diels-Alder reactions, the IEDDAR is less explored. This project will focus on substrate scope, reaction mechanism, catalysts activty and eventually its application in natural product and biological active molecules synthesis, especially the synthesis of artemisinin derivatives. With widening of clinic application and deepening of study,artemisinin derivatives were found to possess other pharmacological activities,such as against other parasites, anticancer activity, against AIDS related diseases, immunosuppression,contragestational effect and anestheticextensive. Previuosly synthetic efforts directed at elaborating this molecule in search for improved biological activity have been largely confined to the lactone ring, and primarily C10 and C9. With the research of IEDDAR , a rapid and efficient route from simple material to artemisinin derivatives other than C9/C10 substituted can be developed
反电子需求的Diels-Alder反应(IEDDAR)是有机合成中的一类重要反应,与一般的Diels-Alder反应不同,该反应是富电子的亲双烯体和缺电子的双烯体之间的环化反应。该反应通常牵涉到一些杂原子,能够迅速构建各种杂环结构,由于一般的天然产物和生物活性分子都含有杂原子,这就使得这类反应在有机合成中十分有用。最近我们就成功地利用该类反应完成了高效抗疟疾药青蒿素的高效全合成。但是相对于一般的Diels-Alder反应,这类反应研究较少,本项目将进一步研究这类反应,深入探讨反应的机理,丰富底物的类型。另一方面,近年来研究发现青蒿素衍生物还具有良好的抗肿瘤效果和一定的免疫抑制作用,但是受制于有限的有机合成方法,药物化学家一般只能修饰青蒿素的9,10位,本项目将利用IEDDAR,从头合成其它位取代的青蒿素衍生物以及相关的活性分子,以期取得更好的药物活性。
Diels-Alder 反应及类似的【4+2】环化反应可以高效地实现两个分子片段的偶联和环化,在有机合成中有着十分重要和广泛的应用,特别是应用于杂环化合物的合成。杂环化合物因其显著的生理药理活性以及丰富的功能性,而被广泛的应用于材料、农业、医药等与人类生活密切相关的行业中。因此本项目利用【4+2】环化反应及相关反应,发展了一些温和条件下杂环化合物的绿色合成方法,并且测定了部分杂环产物的生物活性。部分研究成果已发表在Org. Lett.(2016, 18, 4206),Tetrahedron.(2015, 71, 9251,和 2014, 70, 9615),Org. Bimol. Chem.(2015, 13, 6278,和2015, 13, 2530), Chemistry – A European Journal.(2015, 21, 10278),以及 Synthesis.(2015, 47, 1877 和DOI: 10.1055/s-0036-1588365)等杂志。这一研究为吡啶/吡唑等杂环化合物的合成提供了更为高效、实用的方法,同时有望通过生物活性测试筛选出具有治疗活性的先导化合物。
{{i.achievement_title}}
数据更新时间:2023-05-31
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
针灸治疗胃食管反流病的研究进展
基于全模式全聚焦方法的裂纹超声成像定量检测
结核性胸膜炎分子及生化免疫学诊断研究进展
新型反电子需求Diels-Alder反应的研究及天然产物Grossularines的全合成
发展不对称2-吡喃酮Diels-Alder反应及其在Basiliolides天然产物全合成中的应用
反电子需求的不对称环加成反应研究
光重排和光诱导单电子转移反应研究及在全合成中的应用