The internal heat of the ternary Lithium-ion battery under extreme thermal accumulation conditions accumulates continuously. Chemical reaction and change of material composition enter the qualitative change. Eventually thermal accumulation leads to cracking of the lithium-ion battery diaphragm and causes thermal runaway catastrophes. The nature of its reaction kinetics is still lack of complete theoretical research. This project explore catastrophic phase characteristics which caused by process that transition from quantitative to qualitative change of the ternary lithium-ion battery causes catastrophic under the extreme thermal accumulation conditions; build extension model of the ternary lithium-ion battery quantitative change, qualitative change and catastrophic processes; analyze interaction relationship between the chemical reaction and material composition change in the process of quantitative change to catastrophes of the ternary lithium-ion battery under the extreme thermal accumulation conditions; reveal the discipline that chemical heat-generating reactions and changes of material composition induce catastrophic in the ternary lithium-ion battery from quantitative change into qualitative change; propose control method to inhibit the chemical heat reaction in the battery qualitative change phase according to the domain of discourse recognition of the ternary lithium-ion battery quantitative-qualitative-catastrophe progress. The purpose of the project is to grasp the reaction kinetics mechanism of quantitative change, qualitative change, and catastrophic processes for ternary lithium-ion battery under extreme thermal accumulation conditions, and to provide basic theoretical and key technical support for the improvement of thermal safety of the ternary lithium-ion battery.
极端热积聚工况下三元锂离子电池内部热量持续积聚量变,化学产热反应与材料组分变化进入质变,最终导致锂离子电池隔膜破裂引发热失控灾变,其反应动力学本质特征问题仍缺乏完整的理论研究。本项目探究极端热积聚工况下三元锂离子电池由量变进入质变引发灾变阶段特征,构建三元锂离子电池量变-质变-灾变过程可拓模型,分析三元锂离子电池在量变-质变-灾变过程中化学产热反应与材料组分变化相互影响关联性,揭示化学产热反应与材料组分变化对三元锂离子电池由量变进入质变引发灾变推动规律,通过三元锂离子电池量变-质变-灾变过程论域的识别,提出三元锂离子电池质变阶段化学产热反应抑制控制方法。项目旨在掌握极端热积聚工况下三元锂离子电池量变-质变-灾变过程反应动力学机理,为三元锂离子电池热安全性提升提供基础理论和关键技术支撑。
极端热积聚工况下三元锂离子电池内部热量持续积聚量变,化学产热反应与材料组分变化进入质变,最终导致锂离子电池隔膜破裂引发热失控灾变,其反应动力学本质特征问题仍缺乏完整的理论研究。本项目探究了极端热积聚工况下三元锂离子电池由量变进入质变引发灾变阶段特征,构建了三元锂离子电池量变-质变-灾变过程可拓模型,分析了三元锂离子电池在量变-质变-灾变过程中化学产热反应与材料组分变化相互影响关联性,揭示了化学产热反应与材料组分变化对三元锂离子电池由量变进入质变引发灾变推动规律,通过三元锂离子电池量变-质变-灾变过程论域的识别,提出了三元锂离子电池质变阶段化学产热反应抑制控制方法。项目旨在掌握极端热积聚工况下三元锂离子电池量变-质变-灾变过程反应动力学机理,为三元锂离子电池热安全性提升提供基础理论和关键技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
妊娠对雌性大鼠冷防御性肩胛间区棕色脂肪组织产热的影响及其机制
中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质
一种基于多层设计空间缩减策略的近似高维优化方法
基于MCPF算法的列车组合定位应用研究
二维FM系统的同时故障检测与控制
极端条件下锂离子电池热失控动力学
极端波浪作用下岛礁防波堤动力灾变机理及生态减灾对策
极端降雨作用下红壤土坡响应试验与灾变机理研究
极端海况下南海岛礁地层防波堤动力灾变机理与分析方法