The broad application of biochar leads to its large existence in the environment. However, biochar is likely to experience physical disintegration into nanoparticles due to the long-term weathering and decomposition. Biochar nanoparticles with higher dispersion and mobility may enter the aquatic environment and pose a threat to aquatic ecological safety. Therefore, it is necessary to explore the biological effects and mechanisms of biochar nanoparticles toward aquatic organism, which is an indispensable step for the assessment of environmental risks of biochar. Given the lack of relevant study, our project selected Chlamydomonas reinhardtii, a primary producer in the aquatic ecosystem, as the test organism. The aims of this project are to: 1) investigate the effects of different biomass sources and pyrolysis temperatures on the physicochemical properties of biochar nanoparticles; 2) study the effects of biochar nanoparticles on the growth and physiological indexes of C. reinhardtii; 3) unravel the blocking pathways of biochar nanoparticles to the chloroplast and mitochondrial electron transport chain in algal cells via inhibitors test. In addition, Real-time fluorescence quantitative PCR was used to verify key functional genes, revealing the oxidative damage mechanism of algae caused by biochar nanoparticles at the molecular level. Our results will provide helpful information to understand the relationship between biochar nanoparticles and biological effects, improve the insight into environmental risks of biochar at nanoscale levels, and support scientifically the application of environment-friendly biochar.
生物炭的广泛应用使其在环境中大量赋存,但经长期风化、破碎等自然条件的影响,生物炭会被分解并形成纳米级颗粒。因分散性高且迁移能力强,生物炭纳米颗粒可能会进入水环境中,并对水生态安全造成威胁。因此,探究生物炭纳米颗粒的水生生物效应及作用机制,是评价生物炭环境风险中不可或缺的一环。目前,相关研究工作较为匮乏。本项目以水生态系统中初级生产者莱茵衣藻为供试生物,1)探究不同生物质来源与裂解温度对生物炭纳米颗粒理化特性的影响;2)研究生物炭纳米颗粒对莱茵衣藻的生长和生理生化指标的影响;3)通过抑制剂实验,揭示生物炭纳米颗粒对藻细胞内叶绿体和线粒体电子传递链的阻断路径,并利用实时荧光定量PCR技术验证关键功能基因,从分子水平揭示生物炭纳米颗粒对藻造成的氧化损伤机制。研究结果有助于深入认识生物炭纳米颗粒与生物效应之间的关系,完善生物炭环境风险在纳米尺度上认知的空缺,为环境友好型生物炭的应用提供科学支撑。
生物炭的广泛应用使其在环境中大量赋存,但经长期风化、破碎等自然条件的影响,生物炭会被分解并形成纳米级颗粒。探究生物炭纳米颗粒的水生生物效应及作用机制,对评价生物炭环境风险具有重要意义。本项目首先系统研究了不同生物质来源和裂解温度对生物炭纳米颗粒理化性质的影响;进一步以淡水藻为供试生物,研究了生物炭纳米颗粒对藻的生长、生理生化指标以及微区结构的影响;最后,通过脂肪酸谱与相关基因表达分析,揭示生物炭纳米颗粒对藻细胞脂质代谢的影响机制。研究结果有助于深入认识生物炭纳米颗粒与生物效应之间的关系,完善生物炭环境风险在纳米尺度上认知的空缺,为环境友好型生物炭的应用提供科学支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
粗颗粒土的静止土压力系数非线性分析与计算方法
特斯拉涡轮机运行性能研究综述
莱茵衣藻叶绿素b生物合成调控途径的研究
CrCDPK1调控莱茵衣藻三酰甘油生物合成的分子机制研究
莱茵衣藻Pds基因的克隆及其定位
莱茵衣藻持续光合放氢转基因生物反应器的构建与调控