Bimetallic nanocrystals are often advantageous over single-component systems for a range of fundamental studies and applications such as electrocatalysis and analytical electrochemistry because the associated variations in compositions and spatial distributions provide additional handles for experimentally maneuvering both the structures and properties. As a result, study on the facile synthesis, assembly of low noble metal bimetallic electrocatalysts as well as the realization of their synergistic effects on molecule detection represents an attractive research area and is drawing increasing attention in modern catalysis and electrochemistry.. This proposal is intend to take low platinum bimetallic materials as the research object and carries out their "soft template" synthesis, assembly as well as explores their application in analytical electrochemistry. The main contents of this project include: 1st, the "soft template" synthesis, assembly of bimetallic nanocrystals with ordered nanostructure. 2nd, preparation of the core-shell structured bimetallic nanocrystals as well as their hybrid assembly. 3rd, Application of bimetallic composites in electrocatalysis and analytical electrochemistry. 4th, Study on the synergistic effect of the mult-dimensional growth, assembly as well as their modification with the functional polymers on electrocatalysis and molecule detection.. The main aim of this project is to develop a facile methodology for the synthesis and assembly of low platinum catalysts under mild conditions for the fast and sensitive electrochemical sensing. It is expected that the electro-analytical performance, such as sensitivity, selectivity and stability, of the bimetallic nanoparticle modified electrodes can be significantly enhanced by studying the "soft template" directing mechanism on the growth / assembly dynamics, as well as the synergic catalytic effects of the functional molecular modification, which are important issues and has potential application in both electrocatalysis and modern analytical electrochemistry.
双金属纳米晶因其独特的可调制物化特性而在电催化、电分析领域有着巨大的应用前景,发展其温和、简便的制备方法并实现其特性耦合是现代电分析领域重要的研究方向之一。本申请拟以过渡金属(Fe、Co、Ni)部分取代Pt(Pd、Au)双金属材料为研究对象,开展其"分子模板"方法可控合成、组装及电分析应用研究,主要内容包括:1、双金属微/纳米有序结构的"软模板"合成、组装、表面修饰;2、制备其核-壳结构双金属纳米晶及组装体;3、 双金属纳米晶对若干分子的电化学识别应用;4、双金属纳米晶多级组装、功能分子复合的协同电化学识别机制研究。. 本项目试图发展一种双金属纳米晶温和条件下的制备、组装方法,并通过研究"软模板"对双元金属纳米晶生长/组装的引导机制及复合双元金属的电催化协同、增强机制,在功能分子修饰和多层次组装的基础上提高双金属粒子的催化活性和长期稳定性,并达到对特定分子快速、灵敏检测的目的。
双金属纳米晶因其独特的可调制物理化学特性而在电催化、电分析领域有着巨大的应用前景,发展其温和、简单的制备方法并实现其特性耦合是现代电分析领域重要的研究方向之一。本项目发展了一种双金属纳米晶温和条件下的制备、组装方法,并通过研究“软模板”对双金属纳米晶生长/组装的引导机制及复合双金属的电催化协同、增强机制,在功能分子修饰和多层次组装的基础上提高双金属粒子的催化活性和长期稳定性,并达到对特定分子快速、灵敏检测的目的。主要研究内容包括:. 首先,利用温和的液相化学路线制备出新颖的、组分可控的PtCu,AuCu,PtNiCu,PtAg双金属纳米材料,并利用其较好的生物相容性、电子传输效高、金属材料内部原子之间的协同效应,使得双金属材料构建的电化学传感器对葡萄糖,H2O2,甲胎蛋白等小分子呈现出良好的选择性和优异的灵敏度。双金属材料超强的催化性能和优良的选择性为设计高灵敏度和稳定性的电化学生物传感器提供了新思路。. 此外,采用液相方法合成了介孔PdO微米棒和超长CuS纳米线。基于介孔PdO微米棒的电化学传感器能够成功检测痕量的Cu2+,在含有众多干扰离子的环境体系中,该传感器对Cu2+表现出极高的选择性和检测灵敏度,同时能够成功检测Raw 264.7细胞中释放的Cu2+含量,拓宽了其在环境和生物学方面的应用。超长CuS纳米线的合成拓宽了双金属离子的范围,利用它的信号放大效应,设计的无标记电化学免疫传感器,实现了对人体免疫球蛋白的高灵敏,高选择检测。因此,基于CuS纳米线的电化学免疫生物传感器有望在医学领域得到广泛应用。. 最后,采用气相沉积法合成了ZnO纳米线,并将其转移到柔性基底上构建压电式自驱动纳米器件。利用ZnO纳米线的特殊结构及其疏水性,将细胞色素同工酶P4502C9/细胞色素还原酶固定在纳米线表面,用甲糖宁作为靶药,通过改变弯曲应力的大小和靶药的浓度系统地研究了压电效应对药物代谢的影响。并且通过单根ZnO纳米线构筑的纳米器件,还实现了其对DNA,H2O2等小分子化合物含量的超灵敏检测。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
新疆软紫草提取物对HepG2细胞凋亡的影响及其抗小鼠原位肝癌的作用
内质网应激在抗肿瘤治疗中的作用及研究进展
上转换纳米材料在光动力疗法中的研究进展
纳米空间限域的金属合金粒子的晶相调控及其催化性能研究
微通道限域空间内碳纳米管原位自组装机制研究
嵌入型纳米复合发泡剂及其在限域空间中的发泡行为研究
碳纳米管限域的纳米空间化学研究