The wheel polygonal wear, regarded as the continuously periodic wear along the wheel circumference, has been associated with high frequency and high magnitude impact loads at the wheel/rail interface, and thereby significantly affect the integrity of the structural components of the vehicle and track system. However, the mechanisms leading to the formation of the continuous wheel polygonal wear with high harmonic order have not yet been explained clearly, and the related mitigation methods still remain vague. Thus, the proposed investigations aim at the formation mechanisms and the related mitigation methods of the wheel polygonal wear. A rigid-flexible coupled vehicle/track dynamic model considering the high frequency vibration modes incorporating with a Wheel/rail Semi-Hertzian-based long-term wear model is primarily developed to study the formation mechanism of wheel polygonal wear and its mitigation methods. This model is used to identify the main suspension parameters and contributing factors (structural vibration modes) leading to the formation of wheel wear in different frequency ranges, and study its influences on the rate of growth, amplitude, and the harmonic order of wheel polygonal wear. These further facilitate the establishment of the relationship of the key suspension parameters, the key contributing factors, and the wheel polygonal wear. The effects of vehicle speeds and different track properties on the formation of wheel polygonal wear are also studied through the proposed model, and thereby contribute to the development of an operating strategy-based mitigation method for the wheel polygonal wear considering frequent variations in the vehicle operating speeds and routes.
车轮多边形非圆化磨耗是车轮圆周上连续性周期磨耗,在高速情况下会在轮轨间产生高频冲击载荷,严重影响高速列车和轨道系统的结构可靠性。然而,目前高阶次车轮多边形非圆化磨耗的形成机制尚不清楚,且无有效的抑制措施。因此,本项目拟针对高速列车车轮高阶多边形非圆化磨耗的形成机理和抑制措施开展深入研究。首先,构建能考虑高频范围的车辆-轨道系统刚柔耦合动力学模型和基于轮轨半赫兹接触的车轮磨耗长效迭代模型;其次,研究不同频域内车辆和轨道系统关键参数和关键因素对磨耗生成量的影响,针对各个频率区间识别影响磨耗生成量的关键参数和关键因素;然后,研究系统关键参数和关键因素对车轮多边形非圆化磨耗演变、幅值和阶次的影响,构建系统关键参数-关键因素-车轮多边形非圆化磨耗映射关系;最后,从车辆运营策略角度,分析变化车辆速度和运行交路对车轮多边形非圆化磨耗形成的影响,提出基于运营策略的车轮多边形磨耗抑制措施初步方案。
车轮多边形非圆化磨耗是车轮圆周上连续性周期磨耗,在高速情况下会在轮轨间产生高频 冲击载荷,严重影响高速列车和轨道系统的结构可靠性。然而,目前高阶次车轮多边形非圆化磨耗的形成机制尚不清楚,且无有效的抑制措施。因此,本项目围绕高速列车车轮高阶多边形非圆化磨耗的形成机理和抑制措施开展深入研究。首先,构建能考虑高频范围的车辆-轨道系统刚柔耦合动力学模型和基于轮轨半赫兹接触的车轮磨耗长效迭代模型;其次,研究不同频域内车辆和轨道系统关键参数和关键因素对磨耗生成量的影响,针对各个频率区间识别影响磨耗生成量的关键参数和关键因素;然后,研究系统关键参数和关键因素对车轮多边形非圆化磨耗演变、幅值和阶次的影响,构建系统关键参数-关键因素-车轮多边形非圆化磨耗映射关系;最后,从车辆运营策略角度,分析变化车辆速度和运行交路对车轮多边形非圆化磨耗形成的影响,提出基于运营策略的车轮多边形磨耗抑制措施初步方案。结论表明:高速列车车轮多边形磨耗的形成主要与轮轨间高阶耦合模态相关,即转向架轮对间钢轨三阶弯曲模态。车辆系统悬挂参数的变化对轮轨间高阶耦合模态影响较小,不是影响高速列车车轮多边形磨耗形成的根本原因;改变转向架轴距可以改变轮轨间高阶耦合模态的频率,但仍然不能抑制车轮多边形磨耗形成。轨道系统扣件刚度、阻尼和轨枕间距对车轮多边形磨耗形成影响较大,其中增大扣件刚度会加强低频轮轨耦合振动,从而导致低阶车轮多边形磨耗;增加扣件阻尼可以有效抑制车轮多边形磨耗的形成;同样,改变轨枕间距可以改变轨道系统支撑刚度和阻尼,从而对车轮多边形磨耗形成过程产生影响。通过变交路和变速度运行,可以打破轮轨间固定频率激励,从而抑制车轮多边形磨耗的形成。本项目的研究成果,可以有效支撑高速列车车轮多边形磨耗抑制措施的制定,具有深远的理论意义和工程意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
钢筋混凝土带翼缘剪力墙破坏机理研究
城市轨道交通车站火灾情况下客流疏散能力评价
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于二维材料的自旋-轨道矩研究进展
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
高速列车车轮多边形化研究
基于轮轨滚滑接触工况的高速列车车轮多边形磨耗机理的研究
高速列车车轮多边形磨损形成的机理和对策研究
高速列车轮轨接触与粘着行为和磨耗机理研究