Nano-sized molybdenum sulfide, as a typical two-dimensional transition metal disulfide, with unique layer structure and physicochemical properties, has been widely applied in the industrial and biomedical fields, consequently resulting in great attention to its biological effects and safety problems. However, at present, research on the accumulation, translocation and chemical transformation related metabolism behaviors of nano-sized molybdenum sulfide in biological system are still in its infancy. This project is mainly expected to solve problems such as large size, low yield of nano-sized molybdenum sulfide based on a simple and green synthesis route. Then we use different surface functionalization modification strategies to construct high yield, size controllable, surface charge different molybdenum sulfide with different physicochemical properties based on the characteristics of large surface area and easy surface modification of molybdenum sulfide. The biosafety of molybdenum sulfide with different physicochemical properties will be studied in-depth. Meanwhile, by the combination of in situ, dynamic advantages of synchrotron radiation X-ray absorption near edge structure spectrum (XANES) and nanometer transmission X-ray microscopic imaging (nano TXM) with traditional characterization means, it is very necessary to achieve the multi-level revealing biological function of accumulation, distribution, and excretion behaviors in the metabolism process of different physicochemical properties of molybdenum sulfide in biological environment. The relationship between biological effect and chemical transformation information of molybdenum sulfide in different biological environments will be discussed systematically. The impact rules and data of different physicochemical properties of nano-sized molybdenum sulfide on biological effects and safety will be obtained, which could provide a valuable reference for security applications in industry and biomedical fields of nano-sized molybdenum sulfide.
以纳米硫化钼为代表的二维过渡金属硫化物具有独特的层状结构和物理化学性能,在工业和生物医学领域得到了广泛研究和应用。因此,其生物效应和安全性问题也引起了人们的关注。但目前纳米硫化钼在生物体内的蓄积、转运和转化等代谢研究尚处于起步阶段。本项目拟在简单绿色的合成路线解决纳米硫化钼产率低和尺寸大的问题的基础上,从其理化特性入手,结合其比表面积大和易于表面修饰等特点,进行功能化修饰来构建产率高、尺寸可控、表面电荷不同的纳米硫化钼,深入研究不同理化特性纳米硫化钼安全性的同时,利用原位、动态的同步辐射X射线吸收近边结构谱和纳米透射X射线显微成像技术的优势,并结合电镜等常规方法,在多层次上揭示纳米硫化钼与生物体作用中的吸收、分布和外排等代谢情况,系统阐明生物微环境中硫化钼的化学信息与生物效应的关系,获得纳米理化特性对生物效应与安全性影响规律的重要数据,为纳米硫化钼在工业和生物医学中的安全应用提供参考依据。
纳米硫化钼的生物效应和安全性问题引起了人们的广泛关注。本项目在简单绿色的合成路线解决纳米硫化钼产率低和尺寸大的问题的基础上,从其理化特性入手,结合其比表面积大和易于表面修饰等特点,进行功能化修饰并成功构建了产率高、尺寸可控、表面电荷不同的纳米硫化钼,深入研究了不同理化特性纳米硫化钼安全性的同时,利用原位、动态的同步辐射X射线吸收近边结构谱和纳米透射X射线显微成像技术的优势,并结合电镜等常规方法,在多层次上揭示了纳米硫化钼与生物体作用中的吸收、分布和外排等代谢情况,系统阐明了生物微环境中硫化钼的化学信息与生物效应的关系,获得了纳米理化特性对生物效应与安全性影响规律的重要数据,为纳米硫化钼在工业和生物医学中的安全应用提供了参考依据。本项目顺利完成了任务书中的预期研究目标。在本项目的资助下,共发表SCI论文14篇,申请并授权中国发明专利5项,合作学术专著1部。项目申请人参加国内和国际学术交流7次,其中5次为特邀报告。邀请专家来高能所进行学术交流2次。培养研究生8名。部分重要的SCI成果被选为热点论文并被重要学术网站科普报道。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
硬件木马:关键问题研究进展及新动向
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
金属纳米结构@二硫化钼复合材料可控制备及其在生物分析中的应用
硫化钼纳米复合物的制备、电催化和传感
硫化钼纳米片的制备、功能化修饰及其时空可控的多效抗肿瘤诊疗研究
纳米二硫化钼及其复合材料的制备和分析应用研究