The slurry reactors have been applied in many industrials, and they have great potential in the petrochemical and energy chemical industries due to their prominent advantages of mixing, mass transfer and heat transfer. However, how to realize the rapid and economical separation of liquid products from catalysts continuously is a key issue that should be solved urgently at the present stage. Some new techniques, such as settling and filtration have been proposed in recent years, and the separation of the solid catalyst from the liquid phase is realized. However, there are still three major disadvantages, such as high investment and operating costs and poor continuity that should be conquered. In this project, the directional flow in the internal airlift loop reactor (IALR), the characteristic of catalyst in the slurry reactor and the economical and efficient solid-liquid separation in the hydrocyclone are combined, and a novel IALR for process intensification is invented. Therefore, gas-liquid reaction, separation of the solid catalyst from the slurry and cyclic utilization of the solid catalyst are realized. Moreover, the economical and rapid separation of the solid and the liquid is achieved continuously in this new reactor without extra power, and the commercial production costs will be reduced markedly. Hence, the methods of numerical simulation and experiments are integrated here; the quick and accurate mathematical models that for the design and scale-up of this type of gas-liquid-solid three-phase industrial slurry reactors will be set up. Synergetic transfer mechanisms will be further investigated, and the effects of the geometric and operating parameters on the performance will be analyzed. In addition, the synergetic mechanism among the gas-liquid reaction, the solid-liquid separation and mass transfer in this new reactor for the process intensification will be revealed, and the developed methods will be employed to promote its performance substantially. This project is very beneficial to develop the slurry reactor technologies, and it also can boost its large-scale applications and dissemination.
浆态床反应器由于混合、传质、传热性能优异,尤其在石油化工和能源化工中潜力巨大,如何经济、连续地实现液体产品和催化剂的快速分离是现阶段亟待解决的核心问题。虽然近年提出的沉降、过滤等方法可实现固体催化剂和液相的分离,但存在着投资和操作成本高、连续性差等缺点。本项目将内环流反应器内的定向流动、浆态床催化剂的特点及水力旋流器经济、高效的固液分离相结合,发明了新型浆态床反应与分离过程强化装置,实现了浆态床反应器内气液反应和固体催化剂与液体间固液分离的过程强化。无需额外动力,即可在反应器内实现经济、快速、连续地液固分离,可显著降低工业生产成本。进一步将数值模拟与实验相结合,建立“快而准”的气-液-固三相工程设计和放大模型,研究其内多场协同的传递机理,分析结构和操作参数对反应器性能的影响,揭示过程强化的协同作用机理,从而寻求大幅提高其性能的方法,有利于发展浆态床新技术并实现其大规模推广和应用。
将环流反应器内的定向流动与水力旋流器经济、高效的固液分离相结合,可实现浆态床反应器混合-分离的一体化,不仅节能减排,还可提升浆态床反应器生产的连续化和安全性。本项目将数值模拟与实验相结合,揭示了多过程耦合的过程强化机理,为新型浆态床反应器的设计和放大提供重要的理论基础。主要成果如下:. 1)、首次发现了浆态床反应器内存在的新型二次流(即在大直径反应器中,其轴向上存在着较多随机、交替存在的旋涡),并揭示了其产生和流动机理,促进了多相流理论的发展。. 2)、建立了气体分布器气泡直径的预测模型,为工业曝气反应器和气体分布器的设计提供了依据:通过对气体分布器结构参数(曝气孔直径)、流体物性(表面张力、气体粘度、液体粘度等)和操作参数(过孔气速)等系统性地考察,建立了工业曝气条件下气泡直径的预测模型,为工业设计提供了科学依据。. 3)、揭示了固体颗粒物性(包括粒度、密度、润湿性、球形度等)及浓度对浆态床反应器内主要流体力学参数和传质性能的影响,加深了对多相流的认识。. 4)、新型反应-分离一体化浆态床反应器的分离性能得到了大幅提升,其可被循环利用的最小颗粒直径由57.9 μm降至9.48 μm,拓宽了其应用范围。. 5)、利用定向流动促进液固分离的原理,激发研制了系列反应分离一体化反应器,如混合-分离一体化的新型外环流浆态床反应器、新型气升和搅拌式连续反应结晶器等,并利用开发的新型反应器合成了高质量碳酸钙晶须、纳米氧化锌和高性能高镍梯度正极材料等,尤其是碳酸钙晶须的低成本合成,有望实现其国产化和进口替代。. 已发表论文19篇,其中SCI论文18篇(包括在Engineering、CES、IECR、CEJ等权威SCI期刊上发表论文7篇),EI论文1篇。申请国际PCT发明专利4项,申请德美发明专利5项、国内发明专利9项,授权美国和日本发明专利各1项,授权国内发明专利8项。培养出站博士后2名并皆晋升为副高,培养博士研究生3名、硕士研究生2名、联合培养硕士研究生4名。
{{i.achievement_title}}
数据更新时间:2023-05-31
硬件木马:关键问题研究进展及新动向
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
钢筋混凝土带翼缘剪力墙破坏机理研究
基于二维材料的自旋-轨道矩研究进展
滚动直线导轨副静刚度试验装置设计
促进传递MABR短程硝化反硝化机理及过程强化研究
冶金填充床中多相反应与传递过程耦合机理的多尺度研究
循环浆态床CFD-PBM耦合模型研究
细颗粒固定床中的超临界催化反应与传递过程