本项目将研究一类波动方程的几个反问题的数值解法:在已知一类波动方程的解和部分系数的条件下,求方程或边界条件中未知的系数。由于反问题的不适定性,我们先提出合理的正则化方法,包括Tikhonov正则化和迭代正则化,接着对连续问题用有限元进行离散化,再构造梯度型的优化方法和多重网格技术对离散的问题进行数值求解,并给出数值方法的稳定性和收敛性分析,最后是数值试验和模拟。将求解正问题的现代数值方法应用于反问题和对反问题的求解作数值分析是本项目的创新之处。项目中将要考虑的一个反问题是重构方程的右端项,它同时是时间和空间的函数,这方面的研究以前几乎没有。项目的研究成果将有助于推动反问题数值解法的发展,进而有益于反问题的理论研究。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
基于SSVEP 直接脑控机器人方向和速度研究
波动方程反演问题及其数值方法
波动方程法数值求解一阶双曲型微分方程的研究
时域波动方程反散射问题的聚焦成像算法研究
求解 Sylvester 方程的数值方法