Nonlinear dynamical systems as a means of extending the coupling between excitations and a harmonic oscillator to a wider bandwidth can improve the efficient performance of energy harvesting. However, its complex structure and vibrating characteristics limit its applications in mechanical field. This project intends to utilize theoretical analyses combined with application trials, focuses on rotational real-world environments in which harvestable amounts of vibrational energy can be found. The corresponding nonlinear oscillating phenomena are proposed for different vehicle driving speed ranges, for the purpose of exploring the triggering mechanisms as well as stabilizing principles of hybrid oscillating to further broaden the operational frequency range under multi-input excitations. The dynamic model of the bistable system under low driving speed is established by means of aperiodic inputs and measured road surface excitations, associating with variable features of escape rate for the condition of underdamping, which can tune the coordination of frequencies between aperiodic inputs and escape rates. The active centrifugal effect on tuning the characteristics of potential wells can effectively enlarge the operational frequency bandwidth of high energy orbit oscillating under medium driving speed. The effect can further trigger the shift phenomenon of high energy orbit between bistable state and monostable hardening behavior, and maintain high energy orbit oscillation for a wider bandwidth. Finally, it can be achieved by accomplishing the validation of the hybrid nonlinear oscillating on actual rotating environments. This project aims at clarifying relationship between nonlinear oscillations and dynamic characteristics of vehicle rotating tires, exploring a general method that can more easily stimulate stochastic resonance and stabilize high energy orbit motion thereby improving the overall effectiveness of a rotational energy harvester to solve the problem of power delivery difficulty for rotary tires.
非线性动力学系统能够将环境激励和谐振体间的振动耦合扩展到宽频区域以提高能量俘获效应,而其较为复杂的组成结构及振动特征限制了其在机械领域的应用。本项目拟采用理论分析结合应用试验,针对聚能密集的汽车旋转轮胎,不同的车速范围提出相应的非线性共振现象,研究多输入激励下混合非线性共振现象高效拓频俘能的触发机制及其稳定机理。车辆低速行驶通过建立非周期性信号和实测路面激励下的双稳态系统动力学模型,结合欠阻尼逃逸速率可变特征,调整非周期性信号与逃逸速率间可协调性。车辆中速行驶分析离心加速度调节双稳态势阱特征对于高能轨道运动漂移的影响。车辆高速行驶触发高能轨道运动进一步漂移并稳定单稳态高能轨道运动。最后完成混合非线性共振的实现及实际应用试验验证。本项目旨在明确非线性共振与汽车旋转轮胎间动力学特性联系,寻求更易激发随机共振及稳定高能轨道运动的通用方法,提高轮胎俘能装置的综合性能,最终解决旋转轮胎供电难问题。
非线性动力学系统能够将环境激励和谐振体间的振动耦合扩展到宽频区域以提高能量俘获效应,而其较为复杂的组成结构及振动特征限制了其在机械领域的应用。本项目采用了理论分析结合应用试验,针对聚能密集的汽车旋转轮胎,提出了相应的非线性共振现象应用不同的车速范围,揭示了多输入激励下混合非线性共振现象高效拓频俘能的触发机制及其稳定机理。通过建立非周期性信号和实测路面激励下的双稳态系统动力学模型,结合欠阻尼逃逸速率可变特征,调整非周期性信号与逃逸速率间可协调性。分析离心加速度调节双稳态势阱特征对于高能轨道运动漂移的影响。触发高能轨道运动进一步漂移并稳定单稳态高能轨道运动。最后完成了混合非线性共振的实现及实际应用试验验证。通过本项目的实施,明确了非线性共振与汽车旋转轮胎间动力学特性联系,获得了更易激发随机共振及稳定高能轨道运动的通用方法,提高了轮胎俘能装置的综合性能,最终为解决旋转轮胎供电难问题提供了理论基础及技术保障。
{{i.achievement_title}}
数据更新时间:2023-05-31
监管的非对称性、盈余管理模式选择与证监会执法效率?
粗颗粒土的静止土压力系数非线性分析与计算方法
基于SSVEP 直接脑控机器人方向和速度研究
低轨卫星通信信道分配策略
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
重载智能轮胎胎/路信息感知及自调谐俘能机理研究
用于嵌入式传感自供电的宽带旋转运动非线性压电俘能机理与方法研究
低速时变气流激励下的宽带高效压电俘能方法及发电特性研究
水下系留平台惯性波能装置的非线性宽频俘能机理研究