High throughput space-based information networks (SIN) will enable a “Terabit data rate capacity” broadband wireless access, which previously possible only with fiber-optic links, and offer the access availability of “anywhere and anytime” inherent to the satellites. The project will focus on a fundamental theoretical framework and advanced signal processing and network protocols of the high throughput SIN, and will be a significant enabling factor for the integrated space/air/terrestrial information network of China. First, we will develop a real channel model for the Ka/Q/V band millimeter wave systems, and propose a practical time-varying prediction model based on the AutoRegressive-Moving-Average (ARMA) model. The optimal resource allocation policy is analytically derived by utilizing the partially observable Markov decision process. Then, by taking into account the properties of highly directive antennas at Ka band, we will research on 1) adaptive constellation multiplexing for Ka band MIMO downlink transmission, 2) uncoordinated NOMA aloha uplink protocol with finite blocklengths, 3) decentralized frequency reuse patterns in multibeam broadband satellite communications. Last, the quantitative analysis of capacity of SIN cooperative multi-hop transmission will be modeled, based on a rational Laplace transform to derive closed-form throughput expressions in a matrix exponential distribution form. Then, we will form a cross-layer resources model, and derive the optimal matching policy over multi-type service demands and communication resource cognitive approach. In addition, a multi-hop transmission simulation platform will be developed, by hardware/software co-design method to verify the performance of the above algorithms and protocols. The targeted optimal design of SIN transmission mechanism will serve as an integrated multi-hop transmission scheme for high-efficiency and high reliability transmission. Our outcomes will have a significant impact on the standardization and design of future broadband SIN.
高通量天基信息网(SIN)将提供一种比拟光纤网的宽带接入方法,系统容量可达Terabit/s,实现“无处不在"的高速宽带接入。本项目面向国家“十三五”科技规划的“天地一体化网络”重大工程需求,首先,探索Ka/Q/V频段的毫米波链路多、变参数信道,建立ARMA信道预测模型,利用部分观测马尔科夫决策求解最大期望吞吐量的资源配置策略。在此基础上,发掘Ka频段指向性天线特性,研究最大化系统吞吐量的上下行多址接入技术和资源复用方法,包括:自适应星座复用Ka频段MIMO下行传输方案、非协作NOMA Aloha上行随机接入协议、非中心化的资源管理与复用算法。最后,采用矩阵指数分布拉普拉斯变换的方法,定量分析SIN多跳协作的容量和跨层资源模型,给出适配业务需求和通信资源认知的多跳传输方法,建立高通量SIN容量理论,并搭建软-硬件联合系统实验平台验证。希望通过本项目的研究,为天基宽带网的建设提供关键的解决方案。
本项目瞄准空间通信的发展趋势,以高通量GEO卫星为骨干节点,研究我国天基信息网络的拓扑构建与链路性能,探索了天基信息网络的高效传输机理,力争实现比拟光纤网的无线宽带接入能力。本项目从2017年8月获批之后,到2018年12月底的项目执行期内,按照计划书的预定目标和计划开展了研究,完成了全部的研究内容:首先,研究了高通量天基信息网络的记忆性信道与网络模型,包括,1)时变信道建模及预测算法;2)时变信道容量分析与传输策略;3)基于摄动分析的天基骨干网络构型与链路性能分析。然后,研究了高通量卫星Ka频段下的多址接入与资源配置,包括,1)基于OSTBC-MIMO系统的天基信息网络LTP-HARQ传输协议设计;2)天基信息网络的非协作随机接入技术;3)面向多波束的高通量卫星功率优化策略。.项目执行期间,发表学术论文33篇,其中15篇SCI检索期刊论文,参与了6次国际学术会议并进行学术报告,发表EI检索会议论文18篇,标注率100%。申请及授权国家发明专利8项。培养了硕士研究生12名。
{{i.achievement_title}}
数据更新时间:2023-05-31
低轨卫星通信信道分配策略
基于多模态信息特征融合的犯罪预测算法研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
当归补血汤促进异体移植的肌卫星细胞存活
多空间交互协同过滤推荐
基于组织自愈机制的天基信息网络抗毁路由技术研究
基于准正交互补序列集的高容量多载波CDMA多址接入技术研究
非授权频段下最大化多用户接入容量熵的多址接入技术研究
优化移动通信无线信道容量的时码联合多址