The project will focus on studying the general rules of light active control in light-inert amphiphilic self-assembly systems. We attempt to develop simple, effective and universal approaches to construct self-assemblies (micelle, vesicle, fiber, helix, etc) which can reversibly respond to light irradiation in light-inert amphiphile systems. The applications of such systems in relative areas will also be taken into account. Basing on the research results about the microstructures and other properties of self-assemblies, the interaction mechanism between the "self-assembly unit" and the "responsive unit" will be revealed. Moreover, finding out the role of weak intermolecular interactions especially host-guest interaction playing in intelligent regulation and control of molecular self-assembly is also one of the main targets. Through the project, we will make effort to understand the thermodynamic and kinetic characters of the inclusion process between macrocyclic compounds such as cyclodextrin and various guest molecules (amphiphiles with different molecular structures and the molecules acting as "responsive unit"). Self-assembly features of several important systems under the influence of multiple environmental factors (light and enzyme or light and pH) will be studied into detail so as to develop intelligent self-assembly systems with multiple response. In brief, this project aims to achieve in-depth scientific understanding of intelligent regulation and control of amiphiphilic self-assembly.
本课题旨在深入研究光惰性两亲分子体系自组装光调控的基本规律。实现光惰性两亲分子体系中简单、有效、普遍的构筑可逆性光响应有序组合体(如胶束、囊泡、螺旋、纤维等),并拓展这类体系在相关领域中的应用。同时,通过对有序组合体的微观结构及其他性质的表征,了解"基本自组装单元"与"响应性因子"之间的相互作用机制。揭示主客体系包结作用等弱相互作用在分子自组装智能调控过程中扮演的角色。了解响应性因子及不同结构表面活性剂与环糊精等大环化合物在包结过程中的热力学结合趋势差异和动力学速度特征;研究几类重要体系在光照、酶(或)pH等多重环境因素影响下的自组装特点,发展多重响应的智能组装体。获得两亲分子自组装智能调控的科学认识。
两亲分子在水溶液中可以通过自组装形成形态各异的分子有序组合体,如胶团、囊泡、微乳、纤维、螺旋等。这些有序组合体具有丰富的结构和功能,常备应用于化学、生物学、医药学、材料科学等许多领域中。伴随着两亲分子自组装研究的逐步深入与拓展,相应两亲分子自组装体的智能响应与控制越来越受到科学家的重视。对光照,pH,温度和电场等环境因素刺激具有响应的两亲分子有序组合体相继被大量报道。在影响、调控两亲分子自组装的主要环境因素中,光信号是一种清洁、高效、可逆且非介入性的刺激响应信号,同时光调控因其操控简便易行,与同样为非介入性的温度相比,光信号对体系的调控是基于分子层面的定位型调控,对于体系聚集行为变化机理的解释更加微观、直接,更有助于我们通过分子官能团的微观角度变化对介观相行为变化进行探索,因此成为一种倍受青睐的刺激响应方式。.我们对于惰性体系的光响应性的构筑是通过外加“响应因子”实现的,这样的响应因子可以由偶氮苯@环糊精(Azo@CD)分子形成的主客体结构单元形成。利用环糊精的空腔能够和一些分子形成主客体自组装结构的特征,在惰性分子与环糊精主客体相互作用能力满足:trans-Azo>惰性分子>cis-Azo的条件下,就能够使用这样的响应因子实现惰性体系的光响应性功能的构筑。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
结核性胸膜炎分子及生化免疫学诊断研究进展
物联网中区块链技术的应用与挑战
原发性干燥综合征的靶向治疗药物研究进展
圆偏振光及搅拌对自组装体系中的超分子手性调控
分子体系中光调控下的分子裁剪研究
电场调控智能流体动态自组装及光传输特性研究
基于光响应主客体组装的超分子基因传递体系的研究