As further studying the propagation progresses of optical field in micro-nanostructures, the transient dynamical processes of those effects or progresses have received much concern. The studying team has researched some transient dynamical processes of linear or nonlinear effects of optical field propagating in photonic lattices. But as the transient solutions of nonlinear Schr?dinger Equation are rather complex, the cause, evolution, and the influence factors of that effects have not comprehensive cleared yet. So there needs a more intuitive experimental method to directly observe the transient evolution progress of an optical field. The project intends to transiently far-field microscopic image the side direction sum-frequency beam of propagating light and temporally scan the images. So that one can directly observe the transient dynamical processes of optical fields. Based on this method, the project will study some transient dynamical programs, such as the mechanism of controlling of a micro-structure on the nonlinear dynamics. This thechnique can provide the most direct experimental results to the study on such linear or nonlinear optic field propagation progress or effects. The transiently and microscopically sum-frequency side images are more direct experimental results for quantatively analysing specific evolution processes of optical fields, and also are important evidances to solve the generation reasons and transient dynamical progresses of many effects and processes in optics, which are not perfectly explained or have controversies. The method would be a quite prefect way to help us intuitively and further recognize the generating process and the microscopic mechanism of many optics effects, and is the focus of this project. This thechnique can be widely utilized in fields of chemical materials, microscopic image of biological living cells structures, evolution processes of quantum effects, optics communication device characterization, the mechanism reserches on optics effects, and many crossing fields of transient process microscopic observations.
随着光在微纳结构中传输过程研究的深入,各种效应的瞬态动力学研究备受关注。但由于理论上没有瞬态解析解,实验上没有瞬态光场分布侧向成像技术,效应的产生演化过程和影响因素无法全面明确,需要更直观的手段观测光场瞬态演化过程。课题组前期运用非共线和频FROG系统分析出射光时频域特性并研究了光子晶格中飞秒脉冲传输的瞬态动力学过程。本项目在此基础上首次提出利用非共线和频和泵浦探测,瞬态远场显微成像并时域扫描传输光侧向和频信号,实现直观探测光场瞬态演化过程并用以分析微结构对非线性过程操控机理等瞬态动力学问题。这种对光演化过程的侧向瞬态显微成像,是定量分析光场具体演化过程的更可靠实验结果,是直观、深入认识各效应产生过程及微观机理的更佳途径,是解决一些尚有争议和未能完美解释的现象的成因及瞬态动力学过程的重要依据,也是本项目的核心目标。该技术还可广泛用于量子效应演化过程、活体细胞生物过程等领域的瞬态过程分析。
随着光在微纳结构中传输过程研究的深入,各种效应的瞬态动力学研究备受关注。但由于理论上没有瞬态解析解,实验上没有瞬态光场分布侧向成像技术,效应的产生演化过程和影响因素无法全面明确,需要更直观的手段观测光场瞬态演化过程。课题组前期运用非共线和频FROG系统分析出射光时频域特性并研究了光子晶格中飞秒脉冲传输的瞬态动力学过程。本项目在此基础上首次提出利用非共线和频和泵浦探测,瞬态远场显微成像并时域扫描传输光侧向和频信号,实现直观探测光场瞬态演化过程并用以分析微结构对非线性过程操控机理等瞬态动力学问题。这种对光演化过程的侧向瞬态显微成像,是定量分析光场具体演化过程的更可靠实验结果,是直观、深入认识各效应产生过程及微观机理的更佳途径,是解决一些尚有争议和未能完美解释的现象的成因及瞬态动力学过程的重要依据,也是本项目的核心目标。该技术还可广泛用于量子效应演化过程、活体细胞生物过程等领域的瞬态过程分析。. 研究中,实现了非共线和频显微成像技术,利用800nm飞秒脉冲光实现了不同方向光场的非共线和频信号光,并对信号光进行侧面成像。经成像系统成像,和对成像图的矫正,获得了倏逝波从局域态到导模传输态的动态演化过程。其成像分辨率接近900nm。. 该项科研的成果,实现了对光场传输过程的瞬态动力学过程的直接观测与定量分析。这项技术可以广泛应用于各类光学过程的瞬态动力学过程分析中,解决了以往只能通过端面成像和数值模拟对传输过程进行间接分析的弊病,为各类动力学过程分析研究提供了一项重要技术。研究中解决了倏逝波演化过程描述,为人们对倏逝波耦合过程的理解提供帮助。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
粗颗粒土的静止土压力系数非线性分析与计算方法
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
低轨卫星通信信道分配策略
基于瞬态吸收显微成像的不同基底上石墨烯的载流子弛豫动力学研究
基于瞬态吸收显微成像的一维半导体纳米材料的载流子超快动力学研究
远场超分辨可视显微成像方法
星载非共线TDI CCD成像数据几何处理算法研究