Excess salt intake is an important environmental risk factor for the predisposition to essential hypertension. Previous studies reported that hypoxia-inducible factor (HIF) 1α and its target genes, such as NO synthase, cyclooxygenase 2, and hemeoxygenase 1, are highly expressed in the renal medulla. These HIF-1α target genes play critical roles in the maintenance of sodium homeostasis, and prolyl hydroxylase (PHD) is the key molecule of adjusting HIF-1α. We have found high salt intake can increase renal medullary PHD2, and reduce the levels of HIF-1α and its target genes in Dahl salt-sensitive rats, which promotes the occurrence and development of salt-sensitive hypertension, and potassium supplementation may counteract the effect of sodium. But it is unclear that potassium and sodium influence PHD/HIF-1α pathway by which approach. We hypothesized that inflammation is one of the mechanisms, causing impaired PHD2 response to high salt in Dahl salt-sensitive rats. Potassium supplementation can improve this impairment. Our group will combine molecular biology techniques with animal experiments, considering Dahl salt-sensitive and SS13BN rats as the research models, using immunohistochemistry, Real time RT-PCR and Western blotting methods, exploring the important mechanism of impaired PHD2 response to high salt intake and whether potassium supplement has therapeutic effect by changing the renal medullary PHD2/HIF-1α channel in Dahl salt-sensitive rats. Our study will help to elucidate the molecular mechanism of salt-sensitive hypertension and provide the theoretical bases and molecular targets for the treatment of salt-sensitive hypertension.
钠盐是高血压的一个重要易患因素。文献报道,肾髓质缺氧诱导因子(HIF)1α及其靶基因在维持钠平衡方面发挥重要作用,而脯氨酰羟化酶(PHD)是调节HIF-1α的关键分子。本课题组前期预实验发现,高盐摄入升高Dahl大鼠肾髓质PHD2水平,降低HIF-1α及其靶基因水平,促进了盐敏感性高血压的发生发展;补钾可拮抗这一变化。但钠钾通过何种途径影响该通路尚不清楚。为此,我们提出假说:炎症是引起Dahl大鼠肾髓质PHD2对高盐反应受损的重要机制之一;补钾能起到一定逆转作用。本研究将以Dahl盐敏感和SS13BN大鼠为动物模型,采用Real-time RT-PCR、Western blotting等方法进行深入研究,探索Dahl大鼠肾髓质PHD2对高盐反应受损的机制和补钾是否通过改变PHD2/HIF-1α通路,从而对盐敏感性高血压起到治疗作用,为阐明盐敏感性高血压发生的分子机制和临床治疗提供理论依据。
盐敏感性高血压是当前心血管领域研究的热点内容之一,肾脏钠钾代谢紊乱是盐敏感性形成的主要机制。本课题组前期研究发现,补钾有拮抗高盐引起的血压升高、防止高血压发生的保护作用,尤其对盐敏感者更为显著,但其机制有待进一步阐明。本研究在我们既往研究基础上采用新的研究思路,以Dahl盐敏感大鼠和SS13BN大鼠为研究模型,给予钠钾和酶抑制剂干预4周后应用实时定量PCR检测肾髓质PHD2和 HIF-1α mRNA表达;采用免疫组化和Western blotting方法检测肾髓质PHD2、HIF-1α及其靶基因COX-2、NOS2蛋白水平;采用ELISA检测血清纤溶酶原激活物抑制剂-1、纤维蛋白原和FKN水平;免疫比浊法检测血清hsCRP水平,化学比色法检测肾髓质纤溶酶原激活物抑制剂-1、纤维蛋白原和FKN水平。通过观察钠钾对肾髓质炎性指标、PHD2、HIF-1α及其靶基因表达的影响,进一步探讨了DS大鼠肾髓质PHD2对高盐反应受损的重要机制和补钾的治疗作用。本研究结果显示高盐摄入能升高Dahl盐敏感大鼠肾髓质PHD2水平,同时降低HIF-1α及其靶基因水平,在盐敏感性高血压的发生发展中发挥作用;同时发现炎症是引起Dahl盐敏感大鼠肾髓质PHD2对高盐反应受损的重要机制之一。 补钾在一定程度上通过改变肾髓质PHD/HIF-1α通路从而对盐敏感性高血压起到治疗作用。这对进一步揭示盐敏感性高血压的发生机制,指导高血压临床诊治和人群防治具有重大理论意义和实际应用价值。本课题的完成拓展了人们对盐敏感性高血压发生机制的认识,为研究环境因素(钠钾摄入)在盐敏感性高血压中的作用提供了思路,并为临床治疗提供了新的依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling
An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function
氯盐环境下钢筋混凝土梁的黏结试验研究
Baicalin provides neuroprotection in traumatic brain injury mice model through Akt/Nrf2 pathway
DS大鼠肾脏钠相关基因谱时序表达及盐敏感易感基因筛选研究
耐盐菊芋两个钠(钾)氢逆向转运蛋白调控钾钠平衡和耐盐力差异的作用机制
敲除TRPC6促进肾集合管钠重吸收致盐敏感高血压的机制
肾髓质SIRT1在调节钠平衡及维持正常血压中的作用