In this project, by combining the physical effects of nano scale functional materials with the micro/nano structures of microstructured fiber gratings, the photon movement in waveguides could be manipulated to achieve novel fiber photonic functional devices for practical applications. By studying the odd optical phenomena related to the magneto-optical characteristics of the nano-scale magnetic fluid filled in microstructured fiber gratings under external field, and based on thorough theoretical analysis on bandgap control and mode coupling mechanisms in microstructured fiber gratings with periodic magneto-optical and electrical medium arrangement, theoretical model and more general mode coupling theory would be established. And based on these conclusions, several features of magneto-optical devices, including transmission loss, dispersion, birefringence, polarization, photonic bandgap, and sensing characteristics would be further investigated..By studying the movement behavior of photons in micro/nano waveguides, the regulations governing photons in complicated microstructured optical waveguides and the interaction between photons in different media would be revealed. Related photonic devices such as "quasi-magneto-optical functional microstructured optical fibers" would be studied as well, and moreover, new physical phenomena and regulations would be further explored to provide new thoughts and theoretical basis for developing novel photonic devices, and broader research space for their applications in optical communications and optical sensing areas.
本项目将纳米功能材料的物理效应与微结构光纤光栅的微纳结构有机地结合起来,控制光子在波导中的运动,从而实现全新的光纤光子功能器件。主要以填充纳米磁流体的微结构光纤光栅为研究对象,通过研究外场作用下磁流体的磁光特性的奇异光学现象,对磁光介质和电介质周期性排列的微结构光纤光栅中的带隙调控机制和模式耦合机理进行深入的理论分析,建立理论模型和更为普适的模式耦合理论。并以此为依据,开展对其损耗、色散、双折射、偏振、光子带隙、传感等特性的应用研究。.通过对复合微结构光纤光栅中光子运动学行为的研究,将揭示光子在微纳尺度光波导中的运动规律及其与不同介质的相互作用机制等科学问题。在此基础上,继续开展对'准磁光功能微结构光纤'等相关光子器件的研究,探索其中新的物理现象及规律,为研制新型光纤光子器件的新技术、新结构、新应用提供新的思路和理论依据,为其在光通信和光传感等领域的进一步发展提供更为广阔的创新空间。
随着高速通信的发展,对全光通信技术的要求越来越高。目前将纳米功能材料的物理效应与光纤中的微纳结构结合起来实现新型的全光纤光子功能器件是光电子领域的研究热点。本项目将微结构光纤光栅的微纳结构和纳米磁流体材料的磁光特性有机地结合起来,构建了理论分析模型,研究了光纤带隙及模式耦合的外场调控技术,探索光子在不同介质中的传输运动学过程,为设计新型磁光光子器件奠定理论基础。主要围绕功能材料填充微结构光纤的模式耦合及磁控、温控、声光特性、磁流体包覆光纤光栅后的磁场调谐特性,磁场作用下磁流体在光波段和太赫兹波段的磁光特性、双折射、折射率可调谐特性与热光特性,对磁光介质和电介质周期性排列的微结构光纤光栅中的带隙调控机制和模式耦合机理进行深入的理论分析,揭示了微纳光波导中对光子运动行为的调控机理,并基于微纳光纤倏逝场结合磁流体的磁控光子器件等方面进行了系统研究。提出了磁流体填充微结构光纤的有效技术、微结构光纤中写制光栅的方法以及搭建了磁场调谐实验平台,实现了全新的光纤光子功能器件。本项目的完成可望为研制新一代通信光电子集成器件的新技术、新结构、新特性提供新的思路和理论依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
监管的非对称性、盈余管理模式选择与证监会执法效率?
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
基于倾斜光栅的多维微结构光纤光子器件机理及应用研究
基于复合微结构光纤光栅的多维多参量传感机理及应用研究
基于偶氮苯的复合周期性微结构光纤功能器件机理及应用研究
基于特种空芯光子晶体光纤的光纤光栅理论及相应器件研究