The coupled shear wall structure with replaceable coupling beams is one of the important earthquake resilient structural systems, which restores its seismic performance by replacing the earthquake-damaged coupling beams. However, regarding the strong aftershock sequences, the structural performance and its rapid recovery of the earthquake-damaged coupled shear wall structures have not been fully investigated yet. In terms of these problems, this project proposes a new coupling beam with self-sensing and energy dissipation capacities, which is the key structural element for seismic resistance. The coupling mechanical-electromagnetic mechanism is introduced to innovatively monitoring its deformation and damage behaviors and simultaneously attaching non-contact eddy current damping. This project will firstly construct the sensing analytical model and the coupled mechanical model of the new coupling beam by utilizing the multi-physics simulation and testing techniques. The seismic performance and damage evolution behaviors of the structure under mainshock-aftershock excitations will be revealed, and the performance recovery need will be characterized in terms of the number of coupling beams and the modal frequencies, by using numerical simulation and shaking table test at the structural system level. The integrated monitoring and evaluation method for earthquake resilience of coupled shear wall structures will be systematically developed with the focus on element damage status and system resilience, by using the shear deformation of coupling beams, the rotation of neighboring shear walls, and the monitoring data of structural floors. The influence on the seismic performance variation due to the different plans of coupling beam replacement will be studied with the quantification results of damage severity, and the decision-making method for efficient replacement of damaged coupling beams will be finally proposed. This project will fundamentally support the rapid evaluation and performance recovery of the mainshock-damaged coupled shear wall structures subjected to aftershock sequences.
带可更换连梁剪力墙结构是一类重要的可恢复功能抗震结构体系,即通过更换震损连梁恢复其抗震性能。但考虑强余震序列作用,震损联肢剪力墙的抗震性能及其快速恢复仍有待深入研究。针对上述问题,本项目提出自感知组合耗能连梁,该连梁是结构抗震关键构件,通过引入力电磁效应,创新地使其可监测自身变形和损伤行为,并附加非接触式电涡流阻尼。拟通过多物理场模拟与试验,建立新型连梁传感模型及耦合力学模型;通过整体结构数值模拟和振动台试验,揭示主余震序列下结构性能和损伤演化规律,提出以连梁数量和模态频率表征的性能恢复需求;基于连梁剪切变形、墙肢转角和楼层响应监测数据,以构件损伤和体系可恢复性评估为核心,建立联肢剪力墙地震可恢复功能的监测与评估方法;利用震损程度评估结果,揭示连梁更换差异引起的结构抗震性能变化规律,提出震损连梁高效更换修复决策方法。本项目将为余震序列下震损联肢剪力墙性能快速评估与功能恢复提供重要支撑。
灾害作用下的结构关键部位响应监测与整体性态评估是结构工程与防灾减灾的前沿问题。对可更换连梁的“关键局部响应监测、损伤评估与更换决策”将是结构健康监测面临的全新挑战,相关研究具有重要意义和实践价值。本项目通过连梁自感知和组合耗能机理、主余震序列下联肢剪力墙抗震性能、基于监测数据的构件损伤评估、损伤连梁的更换决策等内容,实现联肢剪力墙的抗余震安全及其性能快速、高效恢复。.具体成果包括:(1)基于墙肢-新型连梁耦合变形特征,建立可更换连梁位移速度场与电磁场耦合的多物理场分析模型及其数值模拟方法;(2)研究力电磁耦合效应及工作机理,研发自感知连梁监测模块,提出基于自感知连梁的联肢剪力墙关键转角变形状态估计方法;(3)构建大样本数据库,提出适用于剪力墙损伤评估的量化模型;(4)利用主余震序列下的弹塑性计算,揭示在主余震作用下连梁损伤演化规律;(5)构建可恢复性评估指标,揭示了剪力墙结构在不同连梁更换下的抗震性能恢复规律。通过数值仿真、模型试验和服役结构,对上述研究成果进行了验证。.本项目提出的力电磁耦合效应及工作机理,揭示磁通量与感应微电流、电涡流阻尼力间的动态影响规律,研发的自感知电涡流阻尼器能够对结构振动进行有效控制,具有较好的工程应用前景。.本项目提出的基于力电磁耦合的剪力墙墙肢转角变形识别方法,提供了识别结构状态评估关键评估指标的手段,支撑结构震后安全状态估计的相关研究,并为基于转角变形评估震损结构性态研究提供理论与方法支持。.本项目提出的剪力墙非线性损伤评估方法,提供了识别结构损伤演化过程的手段,建立基于监测数据的构件地震损伤与结构抗震性态评估,为揭示剪力墙结构功能恢复提供基础的量化评估方法。.本项目提出的性能恢复评价方法,揭示了不同修复决策下可恢复功能结构性态恢复发展路径,有效解决了结构损伤演化不易知、性态恢复难量化的问题,相关研究将加速灾后重建与加固决策的制定。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
论大数据环境对情报学发展的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
自然灾难地居民风险知觉与旅游支持度的关系研究——以汶川大地震重灾区北川和都江堰为例
坚果破壳取仁与包装生产线控制系统设计
可更换连梁-自复位剪力墙可恢复功能抗震结构研究
带有可更换消能连梁的高层混合结构抗震性能及可恢复性研究
带可更换式阻尼夹层的半通缝连梁抗震性能研究
设置可更换耗能连梁的双柱式自复位桥墩抗震性能及设计方法研究