CeO2/BaCeO3 based composites are regarded as one of the most promising electrolytes for intermediate-temperature solid oxide fuel cells (IT-SOFC) due to their advantages including excellent chemical stability of CeO2 based electrolytes and high open circuit voltage of BaCeO3 based electrolytes. Increasing grain-boundary ratio is an effective approach to improve the ionic conductivity due to the grain-boundary effect. However, it is difficult to fabricate CeO2/BaCeO3 based composites with high grain-boundaries ratio by traditional sintering. Besides, the grain-boundary conduction mechanism of CeO2/BaCeO3 based composites is not clear. In this study, high reactive CeO2/BaCeO3 based nanopowders will be synthesized by a microwave assisted combustion method, and CeO2/BaCeO3 based composites with high grain-boundary ratio will be fabricated by a microwave combined two-step sintering process. Sintering characteristics of CeO2/BaCeO3 based nanopowders and sintering mechanisms of CeO2/BaCeO3 based composites will be clarified, and the electrical properties and grain-boundary conduction mechanism will be studied by EIS fitting and concentration cells designing. Aiming to find the correlation among microstructures, grain-boundary conduction mechanism and electrical performance, and resolve the key scientific issues inhibiting the development of CeO2/BaCeO3 based composite electrolytes, this study will provide theoretical basis and technical support for improving the electrical performance, and lay a scientific foundation for promoting the development of SOFC.
CeO2/BaCeO3基复合电解质兼具CeO2基电解质化学稳定性好和BaCeO3基电解质开路电压高的性能优势,是中温固体氧化物燃料电池的重要电解质候选材料。晶界特性对电解质的电学性能有重要影响,增加晶界比是提高离子电导率的有效途径之一。然而,用传统方法难以制备高晶界比的CeO2/BaCeO3基复合电解质;另外,晶界传导机制目前尚不清楚。本项目拟采用微波燃烧法合成高活性CeO2/BaCeO3基纳米粉体,采用微波两步烧结工艺制备高晶界比的CeO2/BaCeO3基复合电解质;研究粉体烧结特性和电解质烧结机理,并借助于交流阻抗谱图拟合和浓差电池电化学测试,研究电解质的电学性能和晶界传导机制;探讨电解质的微观结构、晶界传导机制与电学性能的相关性规律,解决制约CeO2/BaCeO3基复合电解质发展的关键科学问题,为提高电解质的离子电导率提供理论依据和技术支持,为固体氧化物燃料电池产业化奠定科学基础。
晶界特性是影响固体电解质的重要因素之一。本项目围绕高晶界比CeO2/BaCeO3基复合电解质的制备、电学性能、晶界传导机制开展了系统研究。首先,采用微波燃烧法合成了Sm掺杂CeO2/BaCeO3(SDC-BCS)纳米粉体,研究了微波合成机理与烧结特性。SDC-BCS纳米粉体具有晶粒尺寸小(17.83 nm)、比表面积大(34.04 m2/g)、分散性好(φ=1.32)等优点,通过向SDC-BCS中进一步掺杂Bi元素,其烧成温度降低约150℃,解决了因烧结温度过高而导致的晶界电阻过大、晶界分布均匀性差等问题。然后,研究了Bi掺杂SDC-BCS电解质的烧结动力学和超细晶粒化过程,明确了电解质在不同烧成温度区间的晶粒生长机制(在1100℃以下以晶界扩散为主,在1300℃以上以晶界迁移为主),通过调控晶粒生长过程,采用两步烧结工艺制备了平均晶粒尺寸为100-150nm的高晶界比Bi掺杂SDC-BCS电解质。最后,通过交流阻抗图谱、阻塞电极法、浓差电池(氢、氧)设计,研究了电学性能,明确了载流子传导类型和晶界传导机制。高晶界比Bi掺杂SDC-BCS电解质具有显著的“晶界效应”,其表观单位晶界电导率比微米级同类电解质高1-2个数量级。“晶界效应”并非源于额外的电子电导,而是得益于O-H和氧空位浓度的增大,促进了氧离子和质子传导,其中,氧离子传导的提高效应占主导地位。通过研究,本项目揭示了CeO2/BaCeO3基复合电解质制备工艺、微观结构、晶界传导机制以及电学性能的相关性规律,阐述了高晶界比Bi掺杂SDC-BCS电解质的“晶界效应”及机理,明确了晶界载流子传导类型,可为新型中温SOFCs电解质的研发提供新思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
基于Pickering 乳液的分子印迹技术
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
基于混合优化方法的大口径主镜设计
三级硅基填料的构筑及其对牙科复合树脂性能的影响
基于晶界偏析调控的CeO2基电解质微结构工程及相关机理研究
氧化锆基固体电解质的晶界设计
晶界扩散导致晶界迁移的机制及应用前景探索
锆酸盐基电解质陶瓷的晶界设计与性能研究