High quality machining data is extremely important for a powerful industrial country and for the coming era of smart manufacturing. The machining databases available today, however, are not ready to adapt to the demanding of smart manufacturing and cloud manufacturing, owing to the inaccuracy and delayed updating of the data.. The project proposed here will develop a cloud-manufacturing-oriented machining database for basic physical simulation of machining process. The investigations will include dynamic testing of material properties at high temperature and high strain rate, simulated test for high speed cutting, theoretical analysis and numerical simulation of cutting mechanisms, quantitative modeling for tool wear based on variable mass thermodynamics, numerical expression for machined surface integrity of difficult-to-machine materials and finally, the establishment of the cloud-manufacturing-oriented machining database for basic physical simulation of machining process.. The novelty of the research will be seen from the following. A thermo-viscoplasticity constitutive model will be established via material testing at high temperature and high strain rate, in order to better describe the constitutive performance of the material in cutting process. A quantitative analytical tool wear model will be proposed based on a multi-field coupling analysis and physical simulation, so as to detail the tool process quantitatively at more microscopic levels. A dynamic surface integrity model will be set up with the aid of accurate simulation of tool wear and machining process, thereby to characterize and predict the machined surface integrity exactly.
高质量的切削基础数据对于制造业强国和即将到来的智能制造时代都极其重要,但当前的切削数据库在数据的精准性和先进性等方面还有不足,难以适应智能制造、云制造的需求。本课题将研究面向云制造的切削加工物理仿真基础数据库,研究内容包括材料高温高应变率动态性能实验及高速切削过程模拟实验,材料切削机理的理论分析和数值模拟,基于变质量热力学的切削磨损定量计算模型,难加工材料切削过程表面完整性的数据表达模型,最终完成面向云制造的切削加工物理仿真基础数据库的搭建。. 本项目的创新点包括:基于材料高温高应变率动态实验研究结果建立热粘塑性本构模型,更好地描述材料切削过程的本构行为;基于多场耦合建模分析和物理场仿真,建立刀具磨损的定量解析计算模型,从更微观的角度定量的描述刀具的磨损过程;借助于刀具磨损和切削过程物理场精确仿真,建立动态的表面完整性表征模型,对切削加工表面完整性的准确表征和预测。
面向云制造的切削加工物理仿真基础数据库研究的关键是对切削加工物理模型的精确刻画。本项目着眼于切削加工的精确仿真模型建立,为面向云制造的切削加工数据库建立奠定基础。项目基于Hopkinson拉、扭和压材料动态性能实验装置建立一套材料高温高应变率动态力学性能的实验测试平台,形成相关的实验测试技术。基于材料高温高应变率实验测试结果建立材料热粘塑性本构模型通过材料高速切削过程的模拟实验观察、理论分析和数值模拟研究,揭示高速切削过程的基本物理特征与机理,获得描述切削过程的基础科学数据。提出针对典型难加工材料的刀具磨损定量计算理论及模型,实现切削过程给定刀具的磨损定量计算。对高温合金GH4169的切削加工表面完整性进行了系统考察,并结合疲劳寿命表现情况进一步进行了深入分析。建立容纳材料本构、刀具磨损、工件切削表面完整性的基础数据库,为云制造提供基础数据支撑,服务于大数据环境下的云制造系统。共发表论文20余篇,培养硕士博士研究生20余人。
{{i.achievement_title}}
数据更新时间:2023-05-31
空气电晕放电发展过程的特征发射光谱分析与放电识别
三级硅基填料的构筑及其对牙科复合树脂性能的影响
采用深度学习的铣刀磨损状态预测模型
家畜圈舍粪尿表层酸化对氨气排放的影响
铁酸锌的制备及光催化作用研究现状
面向“云制造”的底层加工装备云端化方法研究
基于力-热耦合作用的难加工高速切削物理建模与仿真研究
面向高速切削的难加工材料动态力学性能物理数据研究
面向快速制造的特种加工理论与技术基础