The clinical use of tyrosine kinase inhibitors (TKIs) were mainly limited by drug resistance. According to the ‘combi-targeting’ strategy, we designed and synthesized a series of novel aromatic urea-quinazoline multi-targeting TKIs through combining the scaffold of aromatic urea and quinazoline into one molecule to overcome drug resistance of TKIs. In our previous work, zhk-08-03, as our lead compound, was found to show good tyrosine kinase inhibition activity (IC50s of EGFR, HER2 and VEGFR-2: 13.5, 17.3 and 37.5 nM respectively) and anti-tumor activity (IC50s of A549,MNNG/HOSC1#5, SW1353, H-FOB1.19, A431 and NCI-H1975: 0.30, 0.28, 0.12, 0.39, 0.33, 0.62μM respectively) in vitro. As a continuous research in developing new multi-targeting TKIs, series of analogues of the lead compound will be designed and synthesized. All target compounds will be screened by HTRF and evaluated for in vitro anti-tumor activity. Potent compounds will be further studied for their pharmacokinetics and in vivo activity. To provide the basis for antitumor drug development, modern methods and techniques such as flow cytometer, western blot, and molecular docking will also be utilized to explore the mechanism of antitumor activity and drug resistance.
耐药性问题是限制小分子酪氨酸激酶抑制剂(TKIs)在临床上抗肿瘤应用的突出问题。本课题针对TKIs的耐药难题,提出融合-靶向的结构重组策略,首次将芳基脲类TKIs基本结构(双芳基脲)与喹唑啉类TKIs骨架结构片段(4-芳氨(氧)基喹唑啉)“融合”,得到结构新颖的芳基脲偶联4-芳氨(氧)基喹唑啉类多靶点TKIs。前期研究中,课题组已得到了理想的先导化合物(zhk-08-02抑制EGFR,HER2,VEGFR-2的IC50分别为13.5,17.3和37.5 nM,抑制肿瘤细胞A549,MNNG/HOSC1#5,SW1353,H-FOB1.19,A431和NCI-H1975增值的IC50分别为0.30, 0.28, 0.12, 0.39, 0.33和0.62μM)。本课题将对先导化合物做进一步结构改造,并利用先进技术手段系统阐述目标物抗肿瘤作用机制和抗耐药机制,为新型抗肿瘤药物的研发提供依据。
本研究针对TKIs的耐药难题,提出融合-靶向的结构重组策略,首次将芳基脲类TKIs基本结构(双芳基脲)与喹唑啉类TKIs骨架结构片段(4-芳氨(氧)基喹唑啉)“融合”,得到结构新颖的芳基脲偶联4-芳氨(氧)基喹唑啉类多靶点TKIs。本研究实际完成了82个目标化合物的设计,合成,结构确认和纯度测定。绝大部分化合物的细胞测试结果已经得到,其中大部分具有良好的抗增殖活性。例如,化合物9bd对A549、HT-29和MCF-7肿瘤细胞的IC50分别为1.73μM、0.82μM和2.50μM。部分细胞活性较好的化合物进行了酶活性检测试验,均相时间分辨荧光(HTRF)检测数据表明,一些化合物具有作为EGFR和VEGFR-2双重抑制剂的潜力,其中化合物9af和9bd对EGFR和VEGFR-2激酶表现出较好的抑制活性,9af和9bd对EGFR的IC50分别是37.6 nM和66 nM,对VEGFR-2的IC50分别是89 nM和268 nM。流式细胞实验和计算机虚拟对接实验进一步说明了化合物设计策略的正确性。
{{i.achievement_title}}
数据更新时间:2023-05-31
莱州湾近岸海域中典型抗生素与抗性细菌分布特征及其内在相关性
PI3K-AKT-mTOR通路对骨肉瘤细胞顺铂耐药性的影响及其机制
基于细胞/细胞外囊泡的药物递送系统研究进展
高庙子钠基膨润土纳米孔隙结构的同步辐射小角散射
ABTS法和DPPH法测定类胡萝卜素清除自由基能力的适用性
喹唑啉-嘧啶酮类抗肿瘤先导物的设计、合成和活性研究
具有抗肿瘤活性的糖基喹唑啉类分子的设计、合成及荧光性能的研究
吲哚并喹唑啉类天然产物衍生物的合成与抗肿瘤活性研究
喹唑啉类抗肿瘤化合物的合成及其作用机制的研究