Hurwitz numbers are classical objects in enumerative geometry, which relate the geometry of Riemann surfaces to the representation theory of symmetric groups. The generating series of Hurwitz numbers can be written in a quite neat form using symmetric functions. In this form, one is able to prove that it satisfies the cut-and-join equation. Hurwitz numbers are closely related to Gromov-Witten invariants, and the cut-and-join equation is used to prove many theorems in Gromov-Witten theory. Inspired by the development of orbifold Gromov-Witten theory, one is naturally led to consider the problem of generalizing Hurwitz numbers to the orbifold setting. A natural generalization is the so called G-Hurwitz numbers, whose generating function satisfies the various colored cut-and-join equations. In this project, we plan to study the various properties of G-Hurwitz numbers and the possible applications of the colored cut-and-join equations, and find the mirror curve of single G-Hurwitz numbers.
Hurwitz数是计数几何中的经典对象,它和曲线模空间的几何以及对称群的表示论密切相关。借助于对称函数,Hurwitz数的生成函数可以写成很紧凑的形式,并且可以由此证明它满足cut-and-join方程。Hurwitz数与Gromov-Witten理论紧密相关,cut-and-join方程也被用来证明许多与Gromov-Witten理论相关的定理。受到 orbifold Gromov-Witten理论的影响,人们很自然的考虑加入一个有限群 G 的作用来推广Hurwitz数。一个自然的推广就是G-Hurwitz 数,它的生成函数满足colored cut-and-join方程。在本项目中,我们准备研究G-Hurwitz 数的各种性质以及colored cut-and-join方程的可能的应用,并找出单G-Hurwitz 数的镜像曲线。
Hurwitz数是计数几何中的经典对象,它与曲线模空间、对称群的表示理论密切相关。G-Hurwit数是Hurwitz数的一个自然的推广。我们研究了G-Hurwit数的生成函数满足的colored cut-and-join方程的变形与应用,并找出了单G-Hurwitz数的镜像曲线。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形维数和支持向量机的串联电弧故障诊断方法
五轴联动机床几何误差一次装卡测量方法
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
异质环境中西尼罗河病毒稳态问题解的存在唯一性
Application of ( G '/ G ) Expansion Method for Solving Schrödinger’s Equation with Three-Order Dispersion
G-Hurwitz数的chamber结构与穿墙公式
局部 Gromov-Witten 不变量和镜像对称
Orbifold Landau-Ginzburg镜像对称
拓扑场理论与镜像对称