The reasonable planning, optimizing and controlling of deformation path for large-scale radial-axial ring rolling of difficult-to-deform materials is a key fundamental scientific issue that should be urgently solved for breaking through the technical bottleneck of poor quality stability, poor precision and challenge of integrated control of shape and performance and for realizing automatic rolling and intelligent control of the process for high-end rings served in aerospace industry. Therefore, we put forward the research proposal to achieve the following objectives. One is to establish a scientific planning method of deformation path controlling the heat and force evolution of radial-axial rolling process of large-scale rings, so as to determine the dynamic matching motion tracks of various rolls. Two is to develop intelligent simulation model for the radial-axial ring rolling process based on close-loop control in order to realize integrated predictions of deformation, temperature and microstructure of the process. Three is to reveal the effect rules and mechanism of deformation path on the geometry, temperature and microstructure of the rolling ring, and then deduce the mathematical models between the key process parameters and indicators depicting the shape and performance of the rolled ring. Four is to build the multi-limit optimization model of deformation path with minimum rolling time and the design method of ring blank in consideration of equipment capability, allowable deformation conditions and acceptable geometry and microstructure of difficult-to-deform materials. The planned work in the proposal will be of significant theory and application values for the automation and intelligent control of the rolling process for difficult-to-deform materials large-scale rings with preferable geometry precision and microstructure served in aerospace industry, and for the scientization and standardization of the industrial processes.
难变形材料大型环件双向辗轧变形路径合理规划与优化控制,是突破工业生产稳定性差、精度低、形/性难以协同控制的技术瓶颈,并实现航空航天高端环件成形成性自动化轧制及智能控制迫切需要解决的基础科学问题。本项目研究建立决定热/力变化历史的大型环件双向辗轧变形路径的合理规划方法,解决如何确定各轧辊动态匹配的运动轨迹难题;建立基于反馈控制的环件双向辗轧动态时变过程智能仿真宏微观耦合有限元模型,实现变形、温度与组织等的精确高效综合预测;揭示变形路径对变形、温度与组织等的定量作用规律与机制,建立变形路径与环件形/性评价指标的数学关联模型;建立考虑设备容限、材料工艺性、环件几何与组织要求等多约束并实现环轧时间最短的变形路径优化模型,发展决定变形路径起点的毛坯优化设计方法。该研究对于发展航空航天难变形材料大型环件成形成性自动化轧制与智能控制理论和技术、实现工业生产的科学化与规范化具有重要理论意义和应用价值。
难变形材料大型复杂环类构件广泛应用于航空、航天、能源等高端装备制造领域。然而大型复杂环件辗轧工业生产,面临质量稳定性差、精度低、形/性难以协同控制的技术瓶颈,研究建立决定热力变化历史的辗轧变形路径的科学规划方法,实现轧制过程自动化以减少人工干预,是解决问题的根本途径。.为此,本项目提出通过预设目标环件长大速度这一变形结果,逆向设计决定环轧变形路径的各轧辊随环件瞬时外径变化的运动曲线的思路,建立了基于目标驱动的大型环件双向辗轧变形路径的科学规划方法。在此基础上,建立了与环轧设备控制原理和实际工况一致的大型环件双向辗轧智能仿真有限元模型与方法,实现了大型复杂环类构件自动化虚拟轧制与控制,这为大型复杂环类构件轧制工艺方案的创新设计、可行性评估优化与智能制造奠定了重要的理论、方法与技术基础。.采用智能仿真方法与技术,针对大型环件双向辗轧、大型筒节立式双驱辗轧、复杂异形环件辗轧过程,提出了基于目标(环件长大速度、轧制力、温度)驱动的变形路径设计方法与技术,探明了变形路径对成形过程的作用规律,提高了大型环件双向辗轧过程的稳定性与变形协调性,解决了大型筒节立式双驱辗轧双主辊转速匹配与稳定性控制的难题,突破了复杂异形环件辗轧工艺方案设计(包括中间坯和工装模具设计等)、评估、优化与质量稳定性控制等关键技术。.相关理论和技术成果,应用于航空发动机和重型燃机用钛合金和高温合金复杂异形机匣类环锻件的整体轧制工艺方案设计与优化,改变了企业过去工艺方案设计主要依赖于经验试错的现状,提高了产品质量、减少了材料浪费、缩短了生产周期、降低了成本,实现了资源和环境约束下的大型复杂异形环锻件低成本高性能制造,提升了环锻件制造的国际竞争力。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于分形L系统的水稻根系建模方法研究
监管的非对称性、盈余管理模式选择与证监会执法效率?
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
航天超大型铝合金环件双向辗轧成形稳定性机制与调控研究
大型环件径轴向轧制双变形区变形协调机理
难变形材料高温变形开裂准则研究
基于DMM和FEM的难变形材料变形组织缺陷预测和控制研究