The forming stability is often lost for radial-axial rolling process of super-sized aluminum ring component (φ11m) employed in heavy rocket due to continuously stiffness weakening of aluminum ring blank, uncoordinated deformation in radial and axial directions and its high inertia resulting from large size and weight. Thus, the forming stability mechanism and control becomes a significant scientific issue for heavy rocket manufacturing in our country. So we put forward the research proposal to achieve the following objectives by intelligent simulation combined with theoretical analysis and experimental method. First is to build mechanical model, instability criterion of ring blank and calculation method of clasp force of the guide rolls for the radial-axial ring rolling process configured four guide rolls, realizing optimum configuration and smart flexible control of them. Second is to propose an index for forming stability, then reveal the interactive rule and mechanism of ring blank and rolling curve on the forming stability, and hereby establish coupling optimal design method of ring blank size and rolling curve to ensure deformation compatibility and stable forming. And the last is to explore the influence rule and mechanism of the rolling with changing rotation speed of the main roll on the forming stability, thus propose a new way improving forming stability by adjusting the ring rotation speed and feed amount per revolution through rolling with changing rotation speed of the main roll, and finally establish a new rolling principle and technology with changing rotation speed of the main roll. The work will be of an important theoretical significance and great engineering application prospect for establishing the forming stability mechanism and control theory and technology of the radial-axial rolling process for super-sized aluminum ring used in heavy rocket, satisfying national strategic needs of the moon landing and mars exploration, and developing aerospace high-end manufacturing process and intelligent equipment.
铝合金环坯刚度弱并随轧制不断弱化、径轴向变形极易不协调、环件超大超重惯性大,使得航天超大型铝合金环件(φ11m级)双向辗轧成形稳定性机制与调控,成为重型火箭制造亟待解决的应用基础问题。本项目采用智能仿真融合理论解析和实验方法,建立新型四抱辊超大环双向辗轧力学模型、环坯失稳判据和临界抱辊力计算方法,实现利于稳定成形的四抱辊优化布局与运动液压智能柔性控制;提出成形稳定性指标,揭示环坯尺寸和轧制曲线对稳定性的耦合作用规律与机制,建立总变形量和道次变形量匹配的环坯尺寸和轧制曲线耦合优化方法;提出变主辊转速调控环转速和每转进给量提高稳定性的新途径,探索变主辊转速轧制对稳定性的作用规律与机制,建立变主辊转速轧制工艺新原理与技术。该研究对突破重型火箭超大型铝合金环件双向辗轧成形稳定性控制理论与技术、满足登月和火星探测等国家战略需求、发展航空航天高端制造工艺与智能装备,具有重要理论意义和重大工程应用前景。
航天超大型铝合金环件是重型运载火箭用核心构件,是空间站建设、登月工程等国家战略需求。大型环件双向辗轧成形,已成为该类构件不可替代的先进制造技术。然而,由于铝合金环坯刚度弱且随轧制不断弱化、径向孔型材料变形与轴向孔型材料变形之间难以协调、以及环件超大超重导致成形过程惯性大,超大型铝环双向辗轧成形过程的稳定性极难控制,这经常导致环件产生失稳扭曲、椭圆化等成形缺陷而报废。因此,如何提高超大型铝环双向辗轧成形稳定性,已成为我国航天重型运载火箭制造面临的卡脖子技术之一。..针对航天制造国家需求及面临的技术挑战,本项目提出“航天超大型铝合金环件双向辗轧成形稳定性机制与调控”的研究课题,研究建立了新型四抱辊超大环双向辗轧力学模型、环坯失稳判据和临界抱辊力计算方法,实现了利于稳定成形的四抱辊优化布局与智能柔性力控+实时位控的模型与方法,形成了大型复杂环件双向辗轧智能有限元建模理论与关键技术体系;揭示了环坯尺寸和轧制曲线对成形稳定性的耦合作用规律与机制,建立了考虑设备容限、材料工艺性及环件组织等多约束的变形路径设计方法与技术;提出了变主辊转速调控环转速和每转进给量提高成形稳定性的新途径,探明了变主辊转速轧制对成形稳定性的作用规律与机制,建立了变主辊转速环件轧制工艺新原理与技术。这对于突破重型火箭超大型铝环双向辗轧成形稳定性控制理论与技术、满足登月工程等国家战略需求具有重要理论意义和重大工程应用前景。..将本项目理论和技术成果,应用于航空、能源等领域的大型复杂异形环件轧制成形工业实践,突破了大型复杂异形环件轧制理论和关键技术,提出了大锥度异形环盘件旋轧复合成形新工艺,发明了风电法兰异形锥辊端面轧制和驱动支承齿轮环件轧制成形新技术等,进一步丰富了航空、航天、能源能领域大型复杂环件轧制成形理论和技术,拓展了环轧理论和技术发展的新方向,为我国高端装备基础构件高性能塑性成形精准制造提供了重要借鉴。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
农超对接模式中利益分配问题研究
硬件木马:关键问题研究进展及新动向
基于细粒度词表示的命名实体识别研究
物联网中区块链技术的应用与挑战
难变形材料大型环件双向辗轧变形路径智能仿真优化控制
复杂截面环件增量冷辗扩成形机理探索性研究
基于铸坯的环件辗扩成形基础理论与关键技术
金属环件冷辗扩塑性成形机理及工艺设备研究