High-temperature aquifer thermal energy storage(HT-ATES) is an effective and critical technology for matching supply and demand for heat over time and space. It can achieve a comprehensive utilization of various renewable energy sources and realize energy saving and emission reduction. Currently, high-temperature aquifer energy storage, as one the frontier and hotspot of research in the field of seasonal energy storage, keeps attracting more and more research effort. However, in the high-temperature aquifer energy storage system, the permeability alternation of the reservoir induced by hot water injection has become the main technical bottleneck restricting the wide-application of this technology. The knowledge about the mechanism of permeability evolution under high temperature condition is still limited. .This project focuses on the reservoir permeability evolution driven by the dissolution or precipitation of mineral during the hot water injection. Firstly, the core flooding experiment is conducted under the reservoir condition; then a non-isothermal reactive transport model is developed in the open-source software OpenGeoSys. The model is verified against the experimental data. Next,the verified model is upscaled to the reservoir scale. Combing uncertainty analysis and measurement data, the parameters of the reservoir-scale model are calibrated to quantitatively characterize the long-term evolution of the permeability in the reservoir after several years of stable operation of the system.
高温含水层储能技术是弥补能源供需的时空分布的不平衡,综合利用多种可再生能源,实现节能减排的有效途径,是国内外研究的前沿和热点。然而,高温作用下导致的储层渗透性变化,成为制约该项技术推广应用的主要瓶颈。目前国际上关于高温作用下储层渗透率的演变规律仍不清楚。本项目通过开展储层条件下的岩芯驱替实验,开发非等温反应溶质运移数学模型,依据实验数据完成模型的验证;将验证后的模型参数拓展到储层尺度,建立从岩芯到储层的跨尺度模型,综合不确定性分析和实际工程观测数据,对储层尺度模型进行标定,定量表征储层渗透率的变化规律,并测储层渗透率的长期演变趋势。本项目旨在揭示高温储能系统中矿物组分溶解或沉淀驱动储层渗透率的演变规律,项目的研究成果有助于指导储能系统的优化与评价,提升储能效率,进一步推动该技术在我国和世界范围内的推广和应用。
高温含水层储能技术是弥补能源供需的时空分布不平衡,综合利用多种可再生能源,实现节能减排的有效途径。然而,高温作用下导致的储层渗透性变化,成为制约该项技术推广应用的主要瓶颈。目前国际上关于高温作用下储层渗透率的演变规律仍不清楚。. 本项目选择雄安新区牛驼镇地热田为目标研究区,首先在OpenGeoSys中开发了非等温反应运移模型,实现了两种水-热-化(T-H-C)耦合方式,1)基于查找表的代理模型,2)OGS#Phreeqc的全耦合模型。其次获取了目标储层的岩芯(露头)和流体样品,开展了不同温度下的水岩反应实验,证实了高温流体注入会导致方解石的沉淀和石英的溶解,并导致孔隙度和渗透率的变化。最后开展了目标储层的场地模拟,模拟结果发现水岩反应会产生矿物溶解和沉淀,导致孔隙度降低,并集中发生于热井附近,其变化在0.01-01范围内。模型揭示了不考虑水岩反应的TH模拟会低估储能系统的性能并高估其的成本,因为THC模拟中热井的开采温度更高,且具有较高的储热效率。. 本研究的意义在于,揭示了储热过程中矿物溶沉导致含水层渗透性变化的机制和规律,并予以定量表征,预测储层渗透率的长期演化。可以为实际工程的规划设计提供理论指导,推动高温含水层储能技术在我国和世界范围内的推广和应用,助力实现“双碳”目标。
{{i.achievement_title}}
数据更新时间:2023-05-31
跨社交网络用户对齐技术综述
粗颗粒土的静止土压力系数非线性分析与计算方法
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
近 40 年米兰绿洲农用地变化及其生态承载力研究
中国参与全球价值链的环境效应分析
井中雷达储层渗透率评价方法研究
页岩气开发储层气相渗透率动态变化规律及控制机理
致密气储层渗透率瓶颈区表征及气相相对渗透率改善方法研究
高渗透率光伏配电网储能系统优化配置理论与方法