Input saturation is a common feature of control systems. In practice, the actuators that transfer the control signal in practical applications are always subject to limits in their magnitude or energy. The analysis of dynamical systems in which the feedback is a quantized function has been a central issue in control theory. In this project, the problems of quantized feedback control for nonlinear control systems with input saturation are investigated. Based on the approach to deal with nested saturation, the problems of stability analysis and stabilization of linear systems subject to input saturation and a static saturated quantizer are sloved. The problems of quantized feedback control are investigated for linear systems with input saturation and other types of static quantizers are studied. Focusing on a static logarithmic quantizer and other types of static quantizers , the quantized feedback control problems for a class of Lipschitz nonlinear systems subject to input saturation are discussed. Furthermore, the problems of adaptive quantized feedback control are investigated for a class of nonlinear systems in strict feedback form with input saturation. Compared with the existing result for handing saturation nonlinearity, we use the smooth function to approximate the saturation nonlinear function. The problems investigated in this project are from the literature on quantized feedback control problems for nonlinear control systems with input saturation, which is a hot topic in the control community, and therefore, this confirms to the development trend of this subject.
输入饱和是控制系统一个常见的特征。传输控制信号的执行器在实际应用中都要受到幅值或能量大小的限制。在分析动态系统中,研究反馈被量化在控制理论中已经是一个核心问题。本项目旨在研究带有输入饱和的非线性控制系统的量化反馈控制问题:应用处理嵌套饱和的方法解决在静态饱和量化器情形下带有输入饱和的线性系统的稳定性分析与镇定问题;研究在其它静态量化器情形下具有输入饱和的线性系统量化反馈控制问题。基于静态对数量化器等其它静态量化器,研究带有输入饱和的Lipschitz非线性系统量化反馈控制问题。进一步,研究带有输入饱和的严格反馈非线性系统量化反馈控制问题,与之前处理饱和项不同,利用非线性光滑函数逼近饱和函数。本项目选题紧密围绕具有输入饱和的非线性控制系统的量化反馈控制这一控制科学领域的热点,顺应了该学科的发展趋势。
量化反馈控制是当今控制领域的热点问题。本项目围绕具有输入饱和非线性系统的量化反馈控制控制问题,分别针对:具有执行器饱和时滞系统的量化反馈镇定,一类具有输入饱和非线性系统的基于观测器量化控制,基于观测器非线性时滞系统的量化控制,基于离散时间观测状态和模态混杂随机系统的鲁棒量化控制,饱和约束下切换随机非线性系统自适应模糊跟踪控制,展开了具体研究。提出了新的分析与设计方法,设计了量化反馈控制器,获得闭环系统的轨线从一个有界初始域出发收敛到一个含有平衡态的一个较小的领域内充分条件,得到一系列较成体系的研究成果。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
粗颗粒土的静止土压力系数非线性分析与计算方法
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
面向云工作流安全的任务调度方法
基于有限量化反馈信息的饱和控制系统研究
带有输入饱和的多智能体系统的包含控制研究
带有饱和输入和回滞特性不确定非线性系统的模糊自适应控制
基于量化反馈的容错控制系统优化设计方法