Low-cost, high efficiency and sustainable hydrogen production under mild conditions is one of the major bottlenecks and foremost challanges in the development of renewable energy and hydrogen-economy in nowdays. As a potentional solution, catalytic dehydrogenation of low-cost bioalcohols, such as methanol and ethanol, for efficient hydrogen production has attacted increasing attention in recent years. In this project, we plan to use modern computational quantum chemistry methods, especially the density functional theory (DFT), to study the mechanistic insights of transition metal catalyzed dehydrogenation of alcohols, and investigate the essential rules in the activation of strong chemical bonds, such as the C-H, C-O and O-H bonds, etc. Our research will provide very useful information in understanding the important roles of redox active ligands in catalytic reactions. Based on our understanding of catalytic reaction mechanisms and analysis of the electronic structures of key intermediates and transition states in the reaction pathways, we will construct new metal compounds using base metals and redox active ligands, and computationally verify the catalytic propterties of those newly designed base metal complexes for dehydrogenation of alcohols using various theoretical methods. Taking the advantage of computational study, we can predict chemical properties and reaction mechanisms to an accuracy that rivals the one at experimental level, yet not subject to the limitation of laboratory equipments. Therefore, our theoretical study and computational design will greatly promote the efficiency in the development of new environmentally friendly catalysts for low-cost and high efficiency dehydrogenation of alcohols. Meanwhile, to ensure the relibility of our compuational methods for the mechanistic studies of specific transition metal systems, a series of well known and recently developed density functionals will be tested in our research. The evaluation of those functionals will provide important reference data for future theoretical study of transition metal catalyzed reactions.
醇类化合物脱氢反应是生物质能转化为氢能的关键环节,对实现太阳能的清洁转化和高效利用具有重要意义。本项目将致力于过渡金属配合物催化醇类脱氢反应的理论研究和新型非贵金属催化剂的计算设计。研究工作将以对多种钳形钌配合物催化乙醇脱氢反应的微观反应机理研究为起点,以现代量子化学方法,特别是密度泛函理论(DFT)为手段,了解氧化还原活性配体在催化过程中的重要作用,探索C-H、O-H、N-H等不活泼化学键活化与功能化的规律。通过对关键基元反应中电子结构变化的深入分析,有针对性地构建并计算验证一系列有较高潜力催化醇类脱氢反应的新型非贵金属配合物。研究结果将为新型催化剂的设计和合成提供有力的理论指导,大大提高催化剂的开发效率,降低开发成本。同时,研究过程中对多种理论方法的运用和评估,也将为未来金属有机化学和理论催化的研究,以及适用于过渡金属体系的新型密度泛函的开发,提供具有重要参考价值和启发意义的数据。
本项目所研究的醇类化合物脱氢反应是生物质能到氢能转化的关键环节,高效低成本的醇类脱氢反应对实现太阳能清洁转化和高效利用具有重要意义。本项目在执行期间进展顺利,获得了多项创新性成果,在ACS Catalysis、Journal of Physical Chemistry Letters、Chemical Communications、Chemistry – A European Journal等重要国际学术期刊发表研究论文二十余篇。研究工作以对多种钳形钌配合物催化甲醇和乙醇脱氢反应的研究为起点,使用密度泛函理论(DFT)等现代量子化学方法,深入研究了包括钌、锰、铁、钴、镍、锌等金属配合物在内的多个过渡金属配合物催化的醇类脱氢和羰基化合物加氢反应。在提出多种新型催化反应机理的同时,深入分析了氧化还原活性配体在催化过程中的重要作用,发现了C-H、C=O、O-H、N-H、H-H等不活泼化学键新的活化方式,并在此基础上计算设计了多个具有高效催化醇类脱氢和羰基化合物加氢反应潜力的新型非贵金属配合物。我们的研究成果不仅仅有助于了解控制醇类催化脱氢反应效率的关键因素,对新型催化剂的设计具有重要的指导意义,同时也提出了在实验合成上切实可行的新型催化剂结构,有望大大提高催化剂的开发效率,降低开发成本。同时,我们在研究过程中也对多种DFT方法进行了评估,这些结果也为未来金属有机化学和理论催化的研究,以及适用于过渡金属体系的新型密度泛函的开发,提供具有重要参考价值和启发意义的数据。
{{i.achievement_title}}
数据更新时间:2023-05-31
硬件木马:关键问题研究进展及新动向
钢筋混凝土带翼缘剪力墙破坏机理研究
滚动直线导轨副静刚度试验装置设计
基于混合优化方法的大口径主镜设计
变可信度近似模型及其在复杂装备优化设计中的应用研究进展
铁催化醇类化合物碳-碳偶联反应的理论研究
催化不对称酰基化反应构建手性醇类化合物的研究
取代氨基脲催化脱氢生成新型偶氮化合物的反应研究
单萜类化合物催化脱氢反应及其立体化学的研究